跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

a+b=-2 ab=-3
若要解出方程式,請使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}-2x-3。 若要取得 a 和 b,請預設求解的方程式。
a=-3 b=1
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 唯一的此類組合為系統解。
\left(x-3\right)\left(x+1\right)
使用取得的值,重寫因數分解過後的運算式 \left(x+a\right)\left(x+b\right)。
x=3 x=-1
若要尋找方程式方案,請求解 x-3=0 並 x+1=0。
a+b=-2 ab=1\left(-3\right)=-3
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 x^{2}+ax+bx-3。 若要取得 a 和 b,請預設求解的方程式。
a=-3 b=1
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 唯一的此類組合為系統解。
\left(x^{2}-3x\right)+\left(x-3\right)
將 x^{2}-2x-3 重寫為 \left(x^{2}-3x\right)+\left(x-3\right)。
x\left(x-3\right)+x-3
因式分解 x^{2}-3x 中的 x。
\left(x-3\right)\left(x+1\right)
使用分配律來因式分解常用項 x-3。
x=3 x=-1
若要尋找方程式方案,請求解 x-3=0 並 x+1=0。
x^{2}-2x-3=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 -2 代入 b,以及將 -3 代入 c。
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
對 -2 平方。
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
-4 乘上 -3。
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
將 4 加到 12。
x=\frac{-\left(-2\right)±4}{2}
取 16 的平方根。
x=\frac{2±4}{2}
-2 的相反數是 2。
x=\frac{6}{2}
現在解出 ± 為正號時的方程式 x=\frac{2±4}{2}。 將 2 加到 4。
x=3
6 除以 2。
x=-\frac{2}{2}
現在解出 ± 為負號時的方程式 x=\frac{2±4}{2}。 從 2 減去 4。
x=-1
-2 除以 2。
x=3 x=-1
現已成功解出方程式。
x^{2}-2x-3=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}-2x-3-\left(-3\right)=-\left(-3\right)
將 3 加到方程式的兩邊。
x^{2}-2x=-\left(-3\right)
從 -3 減去本身會剩下 0。
x^{2}-2x=3
從 0 減去 -3。
x^{2}-2x+1=3+1
將 -2 (x 項的係數) 除以 2 可得到 -1。接著,將 -1 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-2x+1=4
將 3 加到 1。
\left(x-1\right)^{2}=4
因數分解 x^{2}-2x+1。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
取方程式兩邊的平方根。
x-1=2 x-1=-2
化簡。
x=3 x=-1
將 1 加到方程式的兩邊。