解 x
x=5
x=13
圖表
共享
已復制到剪貼板
x^{2}-18x+65=0
新增 65 至兩側。
a+b=-18 ab=65
若要解出方程式,請使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}-18x+65。 若要取得 a 和 b,請預設求解的方程式。
-1,-65 -5,-13
因為 ab 是正數,a 和 b 具有相同的正負號。 因為 a+b 是負值,a 和 b 都是負值。 列出乘積為 65 的所有此類整數組合。
-1-65=-66 -5-13=-18
計算每個組合的總和。
a=-13 b=-5
該解的總和為 -18。
\left(x-13\right)\left(x-5\right)
使用取得的值,重寫因數分解過後的運算式 \left(x+a\right)\left(x+b\right)。
x=13 x=5
若要尋找方程式方案,請求解 x-13=0 並 x-5=0。
x^{2}-18x+65=0
新增 65 至兩側。
a+b=-18 ab=1\times 65=65
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 x^{2}+ax+bx+65。 若要取得 a 和 b,請預設求解的方程式。
-1,-65 -5,-13
因為 ab 是正數,a 和 b 具有相同的正負號。 因為 a+b 是負值,a 和 b 都是負值。 列出乘積為 65 的所有此類整數組合。
-1-65=-66 -5-13=-18
計算每個組合的總和。
a=-13 b=-5
該解的總和為 -18。
\left(x^{2}-13x\right)+\left(-5x+65\right)
將 x^{2}-18x+65 重寫為 \left(x^{2}-13x\right)+\left(-5x+65\right)。
x\left(x-13\right)-5\left(x-13\right)
在第一個組因式分解是 x,且第二個組是 -5。
\left(x-13\right)\left(x-5\right)
使用分配律來因式分解常用項 x-13。
x=13 x=5
若要尋找方程式方案,請求解 x-13=0 並 x-5=0。
x^{2}-18x=-65
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x^{2}-18x-\left(-65\right)=-65-\left(-65\right)
將 65 加到方程式的兩邊。
x^{2}-18x-\left(-65\right)=0
從 -65 減去本身會剩下 0。
x^{2}-18x+65=0
從 0 減去 -65。
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 65}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 -18 代入 b,以及將 65 代入 c。
x=\frac{-\left(-18\right)±\sqrt{324-4\times 65}}{2}
對 -18 平方。
x=\frac{-\left(-18\right)±\sqrt{324-260}}{2}
-4 乘上 65。
x=\frac{-\left(-18\right)±\sqrt{64}}{2}
將 324 加到 -260。
x=\frac{-\left(-18\right)±8}{2}
取 64 的平方根。
x=\frac{18±8}{2}
-18 的相反數是 18。
x=\frac{26}{2}
現在解出 ± 為正號時的方程式 x=\frac{18±8}{2}。 將 18 加到 8。
x=13
26 除以 2。
x=\frac{10}{2}
現在解出 ± 為負號時的方程式 x=\frac{18±8}{2}。 從 18 減去 8。
x=5
10 除以 2。
x=13 x=5
現已成功解出方程式。
x^{2}-18x=-65
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}-18x+\left(-9\right)^{2}=-65+\left(-9\right)^{2}
將 -18 (x 項的係數) 除以 2 可得到 -9。接著,將 -9 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-18x+81=-65+81
對 -9 平方。
x^{2}-18x+81=16
將 -65 加到 81。
\left(x-9\right)^{2}=16
因數分解 x^{2}-18x+81。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-9\right)^{2}}=\sqrt{16}
取方程式兩邊的平方根。
x-9=4 x-9=-4
化簡。
x=13 x=5
將 9 加到方程式的兩邊。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}