跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

x^{2}+2x+1=0
新增 1 至兩側。
a+b=2 ab=1
若要解出方程式,請使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}+2x+1。 若要取得 a 和 b,請預設求解的方程式。
a=1 b=1
因為 ab 是正數,a 和 b 具有相同的正負號。 因為 a+b 是正數,a 和 b 都是正數。 唯一的此類組合為系統解。
\left(x+1\right)\left(x+1\right)
使用取得的值,重寫因數分解過後的運算式 \left(x+a\right)\left(x+b\right)。
\left(x+1\right)^{2}
改寫為二項式平方。
x=-1
若要求方程式的解,請解出 x+1=0。
x^{2}+2x+1=0
新增 1 至兩側。
a+b=2 ab=1\times 1=1
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 x^{2}+ax+bx+1。 若要取得 a 和 b,請預設求解的方程式。
a=1 b=1
因為 ab 是正數,a 和 b 具有相同的正負號。 因為 a+b 是正數,a 和 b 都是正數。 唯一的此類組合為系統解。
\left(x^{2}+x\right)+\left(x+1\right)
將 x^{2}+2x+1 重寫為 \left(x^{2}+x\right)+\left(x+1\right)。
x\left(x+1\right)+x+1
因式分解 x^{2}+x 中的 x。
\left(x+1\right)\left(x+1\right)
使用分配律來因式分解常用項 x+1。
\left(x+1\right)^{2}
改寫為二項式平方。
x=-1
若要求方程式的解,請解出 x+1=0。
x^{2}+2x=-1
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x^{2}+2x-\left(-1\right)=-1-\left(-1\right)
將 1 加到方程式的兩邊。
x^{2}+2x-\left(-1\right)=0
從 -1 減去本身會剩下 0。
x^{2}+2x+1=0
從 0 減去 -1。
x=\frac{-2±\sqrt{2^{2}-4}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 2 代入 b,以及將 1 代入 c。
x=\frac{-2±\sqrt{4-4}}{2}
對 2 平方。
x=\frac{-2±\sqrt{0}}{2}
將 4 加到 -4。
x=-\frac{2}{2}
取 0 的平方根。
x=-1
-2 除以 2。
x^{2}+2x=-1
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}+2x+1^{2}=-1+1^{2}
將 2 (x 項的係數) 除以 2 可得到 1。接著,將 1 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+2x+1=-1+1
對 1 平方。
x^{2}+2x+1=0
將 -1 加到 1。
\left(x+1\right)^{2}=0
因數分解 x^{2}+2x+1。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
取方程式兩邊的平方根。
x+1=0 x+1=0
化簡。
x=-1 x=-1
從方程式兩邊減去 1。
x=-1
現已成功解出方程式。 解法是相同的。