跳到主要內容
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

x^{2}+10x+5=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-10±\sqrt{10^{2}-4\times 5}}{2}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-10±\sqrt{100-4\times 5}}{2}
對 10 平方。
x=\frac{-10±\sqrt{100-20}}{2}
-4 乘上 5。
x=\frac{-10±\sqrt{80}}{2}
將 100 加到 -20。
x=\frac{-10±4\sqrt{5}}{2}
取 80 的平方根。
x=\frac{4\sqrt{5}-10}{2}
現在解出 ± 為正號時的方程式 x=\frac{-10±4\sqrt{5}}{2}。 將 -10 加到 4\sqrt{5}。
x=2\sqrt{5}-5
-10+4\sqrt{5} 除以 2。
x=\frac{-4\sqrt{5}-10}{2}
現在解出 ± 為負號時的方程式 x=\frac{-10±4\sqrt{5}}{2}。 從 -10 減去 4\sqrt{5}。
x=-2\sqrt{5}-5
-10-4\sqrt{5} 除以 2。
x^{2}+10x+5=\left(x-\left(2\sqrt{5}-5\right)\right)\left(x-\left(-2\sqrt{5}-5\right)\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 -5+2\sqrt{5} 代入 x_{1} 並將 -5-2\sqrt{5} 代入 x_{2}。