對 u 微分
\frac{7}{8\sqrt[8]{u}}
評估
u^{\frac{7}{8}}
共享
已復制到剪貼板
\sqrt[8]{u}\frac{\mathrm{d}}{\mathrm{d}u}(u^{\frac{3}{4}})+u^{\frac{3}{4}}\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt[8]{u})
對於任何兩個可微分的函式,兩個函式乘積的導數是下列兩者的加總: 第一個函式乘上第二個函式的導數,第二個函式乘上第一個函式的導數。
\sqrt[8]{u}\times \frac{3}{4}u^{\frac{3}{4}-1}+u^{\frac{3}{4}}\times \frac{1}{8}u^{\frac{1}{8}-1}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\sqrt[8]{u}\times \frac{3}{4}u^{-\frac{1}{4}}+u^{\frac{3}{4}}\times \frac{1}{8}u^{-\frac{7}{8}}
化簡。
\frac{3}{4}u^{\frac{1}{8}-\frac{1}{4}}+\frac{1}{8}u^{\frac{3}{4}-\frac{7}{8}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{3}{4}u^{-\frac{1}{8}}+\frac{1}{8}u^{-\frac{1}{8}}
化簡。
u^{\frac{7}{8}}
計算有相同底數之乘冪數相乘的方法: 將指數相加。\frac{1}{8} 加 \frac{3}{4} 得到 \frac{7}{8}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}