解 r (復數求解)
r=-\sqrt{6}\sqrt{\cos(2\theta )}
r=\sqrt{6}\sqrt{\cos(2\theta )}
解 θ (復數求解)
\theta =-\frac{i\ln(\frac{\sqrt{r^{4}-36}+r^{2}}{6})}{2}+\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =-\frac{i\ln(\frac{-\sqrt{r^{4}-36}+r^{2}}{6})}{2}+\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
解 r
r=\sqrt{6\cos(2\theta )}
r=-\sqrt{6\cos(2\theta )}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \pi n_{1}-\frac{\pi }{4}\text{ and }\theta \leq \pi n_{1}+\frac{\pi }{4}\right)
解 θ
\theta =\frac{\arccos(\frac{r^{2}}{6})+2\pi n_{1}}{2}\text{, }n_{1}\in \mathrm{Z}
\theta =\frac{-\arccos(\frac{r^{2}}{6})+2\pi n_{2}}{2}\text{, }n_{2}\in \mathrm{Z}\text{, }|r|\leq \sqrt{6}
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}