解 r (復數求解)
r=\sqrt{\cos(2\theta )+1}
解 θ (復數求解)
\left\{\begin{matrix}\theta =\pi n_{1}+\frac{\pi }{2}\text{, }n_{1}\in \mathrm{Z}\text{, }&r=0\\\theta =-\frac{i\ln(-\sqrt{r^{2}\left(r^{2}-2\right)}+r^{2}-1)}{2}+\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{; }\theta =-\frac{i\ln(\sqrt{r^{2}\left(r^{2}-2\right)}+r^{2}-1)}{2}+\pi n_{3}\text{, }n_{3}\in \mathrm{Z}\text{, }&arg(r)<\pi \text{ and }r\neq 0\end{matrix}\right.
解 r
r=\sqrt{2}|\cos(\theta )|
解 θ
\theta =\pi n_{1}+\frac{\pi }{2}
n_{1}\in \mathrm{Z}
r=0
圖表
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}