解 f (復數求解)
\left\{\begin{matrix}\\f=x+3\text{, }&\text{unconditionally}\\f\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
解 f
\left\{\begin{matrix}f=x+3\text{, }&x\neq 0\\f\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
解 n (復數求解)
n\in \mathrm{C}
x=0\text{ or }f=x+3
解 n
n\in \mathrm{R}
x=0\text{ or }f=x+3
共享
已復制到剪貼板
fx=x^{2}+3x-28\frac{\mathrm{d}}{\mathrm{d}x}(n)y_{1}
將 4 乘上 7 得到 28。
xf=x^{2}+3x
方程式為標準式。
\frac{xf}{x}=\frac{x\left(x+3\right)}{x}
將兩邊同時除以 x。
f=\frac{x\left(x+3\right)}{x}
除以 x 可以取消乘以 x 造成的效果。
f=x+3
x\left(3+x\right) 除以 x。
fx=x^{2}+3x-28\frac{\mathrm{d}}{\mathrm{d}x}(n)y_{1}
將 4 乘上 7 得到 28。
xf=x^{2}+3x
方程式為標準式。
\frac{xf}{x}=\frac{x\left(x+3\right)}{x}
將兩邊同時除以 x。
f=\frac{x\left(x+3\right)}{x}
除以 x 可以取消乘以 x 造成的效果。
f=x+3
x\left(3+x\right) 除以 x。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}