跳到主要內容
對 x 微分
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

\frac{\left(2x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})-\left(-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+1)\right)}{\left(2x^{2}+1\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{\left(2x^{2}+1\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}\times 2\times 2x^{2-1}\right)}{\left(2x^{2}+1\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{\left(2x^{2}+1\right)\left(-2\right)x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
計算。
\frac{2x^{2}\left(-2\right)x^{1}-2x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
使用分配律來展開。
\frac{2\left(-2\right)x^{2+1}-2x^{1}-\left(-4x^{2+1}\right)}{\left(2x^{2}+1\right)^{2}}
計算有相同底數之乘冪數間相乘的方法: 相加其指數即可。
\frac{-4x^{3}-2x^{1}-\left(-4x^{3}\right)}{\left(2x^{2}+1\right)^{2}}
計算。
\frac{\left(-4-\left(-4\right)\right)x^{3}-2x^{1}}{\left(2x^{2}+1\right)^{2}}
合併同類項。
\frac{-2x^{1}}{\left(2x^{2}+1\right)^{2}}
從 -4 減去 -4。
\frac{-2x}{\left(2x^{2}+1\right)^{2}}
任一項 t,t^{1}=t。