d u = 2 x + 3
解 d (復數求解)
\left\{\begin{matrix}d=\frac{2x+3}{u}\text{, }&u\neq 0\\d\in \mathrm{C}\text{, }&x=-\frac{3}{2}\text{ and }u=0\end{matrix}\right.
解 u (復數求解)
\left\{\begin{matrix}u=\frac{2x+3}{d}\text{, }&d\neq 0\\u\in \mathrm{C}\text{, }&x=-\frac{3}{2}\text{ and }d=0\end{matrix}\right.
解 d
\left\{\begin{matrix}d=\frac{2x+3}{u}\text{, }&u\neq 0\\d\in \mathrm{R}\text{, }&x=-\frac{3}{2}\text{ and }u=0\end{matrix}\right.
解 u
\left\{\begin{matrix}u=\frac{2x+3}{d}\text{, }&d\neq 0\\u\in \mathrm{R}\text{, }&x=-\frac{3}{2}\text{ and }d=0\end{matrix}\right.
圖表
共享
已復制到剪貼板
ud=2x+3
方程式為標準式。
\frac{ud}{u}=\frac{2x+3}{u}
將兩邊同時除以 u。
d=\frac{2x+3}{u}
除以 u 可以取消乘以 u 造成的效果。
du=2x+3
方程式為標準式。
\frac{du}{d}=\frac{2x+3}{d}
將兩邊同時除以 d。
u=\frac{2x+3}{d}
除以 d 可以取消乘以 d 造成的效果。
ud=2x+3
方程式為標準式。
\frac{ud}{u}=\frac{2x+3}{u}
將兩邊同時除以 u。
d=\frac{2x+3}{u}
除以 u 可以取消乘以 u 造成的效果。
du=2x+3
方程式為標準式。
\frac{du}{d}=\frac{2x+3}{d}
將兩邊同時除以 d。
u=\frac{2x+3}{d}
除以 d 可以取消乘以 d 造成的效果。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}