解 a (復數求解)
\left\{\begin{matrix}a=\frac{b}{bx-1}\text{, }&x=0\text{ or }b\neq \frac{1}{x}\\a\in \mathrm{C}\text{, }&b=-\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
解 a
\left\{\begin{matrix}a=\frac{b}{bx-1}\text{, }&x=0\text{ or }b\neq \frac{1}{x}\\a\in \mathrm{R}\text{, }&b=-\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
解 b
\left\{\begin{matrix}b=-\frac{1}{x}\text{, }&x\neq 0\\b=\frac{a}{ax-1}\text{, }&x=0\text{ or }a\neq \frac{1}{x}\end{matrix}\right.
圖表
共享
已復制到剪貼板
ab^{2}x^{2}-a=b^{2}x+b
新增 b 至兩側。
\left(b^{2}x^{2}-1\right)a=b^{2}x+b
合併所有包含 a 的項。
\left(b^{2}x^{2}-1\right)a=xb^{2}+b
方程式為標準式。
\frac{\left(b^{2}x^{2}-1\right)a}{b^{2}x^{2}-1}=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
將兩邊同時除以 b^{2}x^{2}-1。
a=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
除以 b^{2}x^{2}-1 可以取消乘以 b^{2}x^{2}-1 造成的效果。
a=\frac{b}{bx-1}
b\left(1+xb\right) 除以 b^{2}x^{2}-1。
ab^{2}x^{2}-a=b^{2}x+b
新增 b 至兩側。
\left(b^{2}x^{2}-1\right)a=b^{2}x+b
合併所有包含 a 的項。
\left(b^{2}x^{2}-1\right)a=xb^{2}+b
方程式為標準式。
\frac{\left(b^{2}x^{2}-1\right)a}{b^{2}x^{2}-1}=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
將兩邊同時除以 b^{2}x^{2}-1。
a=\frac{b\left(bx+1\right)}{b^{2}x^{2}-1}
除以 b^{2}x^{2}-1 可以取消乘以 b^{2}x^{2}-1 造成的效果。
a=\frac{b}{bx-1}
b\left(1+xb\right) 除以 b^{2}x^{2}-1。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}