解 V (復數求解)
V=e^{\frac{Im(t)arg(M)+iRe(t)arg(M)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}-\frac{2\pi n_{1}iRe(t)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}-\frac{2\pi n_{1}Im(t)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}}\left(|M|\right)^{\frac{Re(t)-iIm(t)}{\left(Re(t)\right)^{2}+\left(Im(t)\right)^{2}}}
n_{1}\in \mathrm{Z}
解 M
M=V^{t}
\left(V<0\text{ and }Denominator(t)\text{bmod}2=1\right)\text{ or }\left(V=0\text{ and }t>0\right)\text{ or }V>0
解 V
\left\{\begin{matrix}V=M^{\frac{1}{t}}\text{, }&\left(Numerator(t)\text{bmod}2=1\text{ and }Denominator(t)\text{bmod}2=1\text{ and }M<0\text{ and }M^{\frac{1}{t}}\neq 0\right)\text{ or }\left(M=0\text{ and }t>0\right)\text{ or }\left(M>0\text{ and }t\neq 0\right)\\V=-M^{\frac{1}{t}}\text{, }&\left(M<0\text{ and }Numerator(t)\text{bmod}2=1\text{ and }Numerator(t)\text{bmod}2=0\text{ and }Denominator(t)\text{bmod}2=1\text{ and }M^{\frac{1}{t}}\neq 0\right)\text{ or }\left(t\neq 0\text{ and }M>0\text{ and }Numerator(t)\text{bmod}2=0\text{ and }Denominator(t)\text{bmod}2=1\right)\text{ or }\left(Numerator(t)\text{bmod}2=0\text{ and }M=0\text{ and }t>0\right)\text{ or }\left(M>0\text{ and }t\neq 0\text{ and }M^{\frac{1}{t}}<0\text{ and }Numerator(t)\text{bmod}2=0\right)\\V\neq 0\text{, }&t=0\text{ and }M=1\end{matrix}\right.
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}