因式分解
\left(c-1\right)\left(9c-1\right)
評估
\left(c-1\right)\left(9c-1\right)
共享
已復制到剪貼板
a+b=-10 ab=9\times 1=9
分組對運算式進行因數分解。首先,運算式必須重寫為 9c^{2}+ac+bc+1。 若要取得 a 和 b,請預設求解的方程式。
-1,-9 -3,-3
因為 ab 是正數,a 和 b 具有相同的正負號。 因為 a+b 是負值,a 和 b 都是負值。 列出乘積為 9 的所有此類整數組合。
-1-9=-10 -3-3=-6
計算每個組合的總和。
a=-9 b=-1
該解的總和為 -10。
\left(9c^{2}-9c\right)+\left(-c+1\right)
將 9c^{2}-10c+1 重寫為 \left(9c^{2}-9c\right)+\left(-c+1\right)。
9c\left(c-1\right)-\left(c-1\right)
在第一個組因式分解是 9c,且第二個組是 -1。
\left(c-1\right)\left(9c-1\right)
使用分配律來因式分解常用項 c-1。
9c^{2}-10c+1=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 9}}{2\times 9}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
c=\frac{-\left(-10\right)±\sqrt{100-4\times 9}}{2\times 9}
對 -10 平方。
c=\frac{-\left(-10\right)±\sqrt{100-36}}{2\times 9}
-4 乘上 9。
c=\frac{-\left(-10\right)±\sqrt{64}}{2\times 9}
將 100 加到 -36。
c=\frac{-\left(-10\right)±8}{2\times 9}
取 64 的平方根。
c=\frac{10±8}{2\times 9}
-10 的相反數是 10。
c=\frac{10±8}{18}
2 乘上 9。
c=\frac{18}{18}
現在解出 ± 為正號時的方程式 c=\frac{10±8}{18}。 將 10 加到 8。
c=1
18 除以 18。
c=\frac{2}{18}
現在解出 ± 為負號時的方程式 c=\frac{10±8}{18}。 從 10 減去 8。
c=\frac{1}{9}
透過找出與消去 2,對分式 \frac{2}{18} 約分至最低項。
9c^{2}-10c+1=9\left(c-1\right)\left(c-\frac{1}{9}\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 1 代入 x_{1} 並將 \frac{1}{9} 代入 x_{2}。
9c^{2}-10c+1=9\left(c-1\right)\times \frac{9c-1}{9}
從 c 減去 \frac{1}{9} 的算法: 先通分,接著將分子相減,然後化為最簡分式。
9c^{2}-10c+1=\left(c-1\right)\left(9c-1\right)
在 9 和 9 中同時消去最大公因數 9。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}