跳到主要內容
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

-x^{2}-4x+7=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 7}}{2\left(-1\right)}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 7}}{2\left(-1\right)}
對 -4 平方。
x=\frac{-\left(-4\right)±\sqrt{16+4\times 7}}{2\left(-1\right)}
-4 乘上 -1。
x=\frac{-\left(-4\right)±\sqrt{16+28}}{2\left(-1\right)}
4 乘上 7。
x=\frac{-\left(-4\right)±\sqrt{44}}{2\left(-1\right)}
將 16 加到 28。
x=\frac{-\left(-4\right)±2\sqrt{11}}{2\left(-1\right)}
取 44 的平方根。
x=\frac{4±2\sqrt{11}}{2\left(-1\right)}
-4 的相反數是 4。
x=\frac{4±2\sqrt{11}}{-2}
2 乘上 -1。
x=\frac{2\sqrt{11}+4}{-2}
現在解出 ± 為正號時的方程式 x=\frac{4±2\sqrt{11}}{-2}。 將 4 加到 2\sqrt{11}。
x=-\left(\sqrt{11}+2\right)
4+2\sqrt{11} 除以 -2。
x=\frac{4-2\sqrt{11}}{-2}
現在解出 ± 為負號時的方程式 x=\frac{4±2\sqrt{11}}{-2}。 從 4 減去 2\sqrt{11}。
x=\sqrt{11}-2
4-2\sqrt{11} 除以 -2。
-x^{2}-4x+7=-\left(x-\left(-\left(\sqrt{11}+2\right)\right)\right)\left(x-\left(\sqrt{11}-2\right)\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 -\left(2+\sqrt{11}\right) 代入 x_{1} 並將 -2+\sqrt{11} 代入 x_{2}。