解 I
I=\frac{2\left(\sin(t)+\cos(T)\right)}{7}
解 T (復數求解)
T=\left(-i\right)\ln(\frac{7}{2}I+\frac{1}{2}ie^{it}+\left(-\frac{1}{2}i\right)e^{\left(-i\right)t}+\left(-\frac{1}{2}\right)\left(\left(\left(-7\right)I+\left(-i\right)e^{it}+ie^{\left(-i\right)t}\right)^{2}-4\right)^{\frac{1}{2}})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
T=\left(-i\right)\ln(\frac{7}{2}I+\frac{1}{2}ie^{it}+\left(-\frac{1}{2}i\right)e^{\left(-i\right)t}+\frac{1}{2}\left(\left(\left(-7\right)I+\left(-i\right)e^{it}+ie^{\left(-i\right)t}\right)^{2}-4\right)^{\frac{1}{2}})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
共享
已復制到剪貼板
7I=2\sin(t)+2\cos(T)
方程式為標準式。
\frac{7I}{7}=\frac{2\left(\sin(t)+\cos(T)\right)}{7}
將兩邊同時除以 7。
I=\frac{2\left(\sin(t)+\cos(T)\right)}{7}
除以 7 可以取消乘以 7 造成的效果。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}