解 g
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=-67\end{matrix}\right.
解 k
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
共享
已復制到剪貼板
67g-\left(-k\right)g=0
從兩邊減去 \left(-k\right)g。
67g+kg=0
將 -1 乘上 -1 得到 1。
\left(67+k\right)g=0
合併所有包含 g 的項。
\left(k+67\right)g=0
方程式為標準式。
g=0
0 除以 67+k。
\left(-k\right)g=67g
換邊,將所有變數項都置於左邊。
-gk=67g
重新排列各項。
\left(-g\right)k=67g
方程式為標準式。
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
將兩邊同時除以 -g。
k=\frac{67g}{-g}
除以 -g 可以取消乘以 -g 造成的效果。
k=-67
67g 除以 -g。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}