跳到主要內容
解 x (復數求解)
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

-x^{2}+3x+5=12
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
-x^{2}+3x+5-12=12-12
從方程式兩邊減去 12。
-x^{2}+3x+5-12=0
從 12 減去本身會剩下 0。
-x^{2}+3x-7=0
從 5 減去 12。
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -1 代入 a,將 3 代入 b,以及將 -7 代入 c。
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
對 3 平方。
x=\frac{-3±\sqrt{9+4\left(-7\right)}}{2\left(-1\right)}
-4 乘上 -1。
x=\frac{-3±\sqrt{9-28}}{2\left(-1\right)}
4 乘上 -7。
x=\frac{-3±\sqrt{-19}}{2\left(-1\right)}
將 9 加到 -28。
x=\frac{-3±\sqrt{19}i}{2\left(-1\right)}
取 -19 的平方根。
x=\frac{-3±\sqrt{19}i}{-2}
2 乘上 -1。
x=\frac{-3+\sqrt{19}i}{-2}
現在解出 ± 為正號時的方程式 x=\frac{-3±\sqrt{19}i}{-2}。 將 -3 加到 i\sqrt{19}。
x=\frac{-\sqrt{19}i+3}{2}
-3+i\sqrt{19} 除以 -2。
x=\frac{-\sqrt{19}i-3}{-2}
現在解出 ± 為負號時的方程式 x=\frac{-3±\sqrt{19}i}{-2}。 從 -3 減去 i\sqrt{19}。
x=\frac{3+\sqrt{19}i}{2}
-3-i\sqrt{19} 除以 -2。
x=\frac{-\sqrt{19}i+3}{2} x=\frac{3+\sqrt{19}i}{2}
現已成功解出方程式。
-x^{2}+3x+5=12
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
-x^{2}+3x+5-5=12-5
從方程式兩邊減去 5。
-x^{2}+3x=12-5
從 5 減去本身會剩下 0。
-x^{2}+3x=7
從 12 減去 5。
\frac{-x^{2}+3x}{-1}=\frac{7}{-1}
將兩邊同時除以 -1。
x^{2}+\frac{3}{-1}x=\frac{7}{-1}
除以 -1 可以取消乘以 -1 造成的效果。
x^{2}-3x=\frac{7}{-1}
3 除以 -1。
x^{2}-3x=-7
7 除以 -1。
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-7+\left(-\frac{3}{2}\right)^{2}
將 -3 (x 項的係數) 除以 2 可得到 -\frac{3}{2}。接著,將 -\frac{3}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-3x+\frac{9}{4}=-7+\frac{9}{4}
-\frac{3}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}-3x+\frac{9}{4}=-\frac{19}{4}
將 -7 加到 \frac{9}{4}。
\left(x-\frac{3}{2}\right)^{2}=-\frac{19}{4}
因數分解 x^{2}-3x+\frac{9}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
取方程式兩邊的平方根。
x-\frac{3}{2}=\frac{\sqrt{19}i}{2} x-\frac{3}{2}=-\frac{\sqrt{19}i}{2}
化簡。
x=\frac{3+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+3}{2}
將 \frac{3}{2} 加到方程式的兩邊。