跳到主要內容
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

2\left(2x^{2}+3x-5\right)
因式分解 2。
a+b=3 ab=2\left(-5\right)=-10
請考慮 2x^{2}+3x-5。 分組對運算式進行因數分解。首先,運算式必須重寫為 2x^{2}+ax+bx-5。 若要取得 a 和 b,請預設求解的方程式。
-1,10 -2,5
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -10 的所有此類整數組合。
-1+10=9 -2+5=3
計算每個組合的總和。
a=-2 b=5
該解的總和為 3。
\left(2x^{2}-2x\right)+\left(5x-5\right)
將 2x^{2}+3x-5 重寫為 \left(2x^{2}-2x\right)+\left(5x-5\right)。
2x\left(x-1\right)+5\left(x-1\right)
在第一個組因式分解是 2x,且第二個組是 5。
\left(x-1\right)\left(2x+5\right)
使用分配律來因式分解常用項 x-1。
2\left(x-1\right)\left(2x+5\right)
重寫完整因數分解過的運算式。
4x^{2}+6x-10=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-10\right)}}{2\times 4}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-6±\sqrt{36-4\times 4\left(-10\right)}}{2\times 4}
對 6 平方。
x=\frac{-6±\sqrt{36-16\left(-10\right)}}{2\times 4}
-4 乘上 4。
x=\frac{-6±\sqrt{36+160}}{2\times 4}
-16 乘上 -10。
x=\frac{-6±\sqrt{196}}{2\times 4}
將 36 加到 160。
x=\frac{-6±14}{2\times 4}
取 196 的平方根。
x=\frac{-6±14}{8}
2 乘上 4。
x=\frac{8}{8}
現在解出 ± 為正號時的方程式 x=\frac{-6±14}{8}。 將 -6 加到 14。
x=1
8 除以 8。
x=-\frac{20}{8}
現在解出 ± 為負號時的方程式 x=\frac{-6±14}{8}。 從 -6 減去 14。
x=-\frac{5}{2}
透過找出與消去 4,對分式 \frac{-20}{8} 約分至最低項。
4x^{2}+6x-10=4\left(x-1\right)\left(x-\left(-\frac{5}{2}\right)\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 1 代入 x_{1} 並將 -\frac{5}{2} 代入 x_{2}。
4x^{2}+6x-10=4\left(x-1\right)\left(x+\frac{5}{2}\right)
將 p-\left(-q\right) 形式的所有運算式化簡為 p+q。
4x^{2}+6x-10=4\left(x-1\right)\times \frac{2x+5}{2}
將 \frac{5}{2} 與 x 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
4x^{2}+6x-10=2\left(x-1\right)\left(2x+5\right)
在 4 和 2 中同時消去最大公因數 2。