跳到主要內容
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

4x^{2}+2x-1=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-1\right)}}{2\times 4}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-2±\sqrt{4-4\times 4\left(-1\right)}}{2\times 4}
對 2 平方。
x=\frac{-2±\sqrt{4-16\left(-1\right)}}{2\times 4}
-4 乘上 4。
x=\frac{-2±\sqrt{4+16}}{2\times 4}
-16 乘上 -1。
x=\frac{-2±\sqrt{20}}{2\times 4}
將 4 加到 16。
x=\frac{-2±2\sqrt{5}}{2\times 4}
取 20 的平方根。
x=\frac{-2±2\sqrt{5}}{8}
2 乘上 4。
x=\frac{2\sqrt{5}-2}{8}
現在解出 ± 為正號時的方程式 x=\frac{-2±2\sqrt{5}}{8}。 將 -2 加到 2\sqrt{5}。
x=\frac{\sqrt{5}-1}{4}
-2+2\sqrt{5} 除以 8。
x=\frac{-2\sqrt{5}-2}{8}
現在解出 ± 為負號時的方程式 x=\frac{-2±2\sqrt{5}}{8}。 從 -2 減去 2\sqrt{5}。
x=\frac{-\sqrt{5}-1}{4}
-2-2\sqrt{5} 除以 8。
4x^{2}+2x-1=4\left(x-\frac{\sqrt{5}-1}{4}\right)\left(x-\frac{-\sqrt{5}-1}{4}\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 \frac{-1+\sqrt{5}}{4} 代入 x_{1} 並將 \frac{-1-\sqrt{5}}{4} 代入 x_{2}。