跳到主要內容
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

3x^{2}+4x-1=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-4±\sqrt{4^{2}-4\times 3\left(-1\right)}}{2\times 3}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-4±\sqrt{16-4\times 3\left(-1\right)}}{2\times 3}
對 4 平方。
x=\frac{-4±\sqrt{16-12\left(-1\right)}}{2\times 3}
-4 乘上 3。
x=\frac{-4±\sqrt{16+12}}{2\times 3}
-12 乘上 -1。
x=\frac{-4±\sqrt{28}}{2\times 3}
將 16 加到 12。
x=\frac{-4±2\sqrt{7}}{2\times 3}
取 28 的平方根。
x=\frac{-4±2\sqrt{7}}{6}
2 乘上 3。
x=\frac{2\sqrt{7}-4}{6}
現在解出 ± 為正號時的方程式 x=\frac{-4±2\sqrt{7}}{6}。 將 -4 加到 2\sqrt{7}。
x=\frac{\sqrt{7}-2}{3}
-4+2\sqrt{7} 除以 6。
x=\frac{-2\sqrt{7}-4}{6}
現在解出 ± 為負號時的方程式 x=\frac{-4±2\sqrt{7}}{6}。 從 -4 減去 2\sqrt{7}。
x=\frac{-\sqrt{7}-2}{3}
-4-2\sqrt{7} 除以 6。
3x^{2}+4x-1=3\left(x-\frac{\sqrt{7}-2}{3}\right)\left(x-\frac{-\sqrt{7}-2}{3}\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 \frac{-2+\sqrt{7}}{3} 代入 x_{1} 並將 \frac{-2-\sqrt{7}}{3} 代入 x_{2}。