因式分解
\left(x-8\right)\left(x-3\right)
評估
\left(x-8\right)\left(x-3\right)
圖表
共享
已復制到剪貼板
x^{2}-11x+24
重新排列多項式,使其以標準式表示。由乘冪數最高的項目到乘冪數最低的項目依序排列。
a+b=-11 ab=1\times 24=24
分組對運算式進行因數分解。首先,運算式必須重寫為 x^{2}+ax+bx+24。 若要取得 a 和 b,請預設求解的方程式。
-1,-24 -2,-12 -3,-8 -4,-6
因為 ab 是正數,a 和 b 具有相同的正負號。 因為 a+b 是負值,a 和 b 都是負值。 列出乘積為 24 的所有此類整數組合。
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
計算每個組合的總和。
a=-8 b=-3
該解的總和為 -11。
\left(x^{2}-8x\right)+\left(-3x+24\right)
將 x^{2}-11x+24 重寫為 \left(x^{2}-8x\right)+\left(-3x+24\right)。
x\left(x-8\right)-3\left(x-8\right)
在第一個組因式分解是 x,且第二個組是 -3。
\left(x-8\right)\left(x-3\right)
使用分配律來因式分解常用項 x-8。
x^{2}-11x+24=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
對 -11 平方。
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
-4 乘上 24。
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
將 121 加到 -96。
x=\frac{-\left(-11\right)±5}{2}
取 25 的平方根。
x=\frac{11±5}{2}
-11 的相反數是 11。
x=\frac{16}{2}
現在解出 ± 為正號時的方程式 x=\frac{11±5}{2}。 將 11 加到 5。
x=8
16 除以 2。
x=\frac{6}{2}
現在解出 ± 為負號時的方程式 x=\frac{11±5}{2}。 從 11 減去 5。
x=3
6 除以 2。
x^{2}-11x+24=\left(x-8\right)\left(x-3\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 8 代入 x_{1} 並將 3 代入 x_{2}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}