跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

2x^{2}+5x=8
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
2x^{2}+5x-8=8-8
從方程式兩邊減去 8。
2x^{2}+5x-8=0
從 8 減去本身會剩下 0。
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-8\right)}}{2\times 2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 2 代入 a,將 5 代入 b,以及將 -8 代入 c。
x=\frac{-5±\sqrt{25-4\times 2\left(-8\right)}}{2\times 2}
對 5 平方。
x=\frac{-5±\sqrt{25-8\left(-8\right)}}{2\times 2}
-4 乘上 2。
x=\frac{-5±\sqrt{25+64}}{2\times 2}
-8 乘上 -8。
x=\frac{-5±\sqrt{89}}{2\times 2}
將 25 加到 64。
x=\frac{-5±\sqrt{89}}{4}
2 乘上 2。
x=\frac{\sqrt{89}-5}{4}
現在解出 ± 為正號時的方程式 x=\frac{-5±\sqrt{89}}{4}。 將 -5 加到 \sqrt{89}。
x=\frac{-\sqrt{89}-5}{4}
現在解出 ± 為負號時的方程式 x=\frac{-5±\sqrt{89}}{4}。 從 -5 減去 \sqrt{89}。
x=\frac{\sqrt{89}-5}{4} x=\frac{-\sqrt{89}-5}{4}
現已成功解出方程式。
2x^{2}+5x=8
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
\frac{2x^{2}+5x}{2}=\frac{8}{2}
將兩邊同時除以 2。
x^{2}+\frac{5}{2}x=\frac{8}{2}
除以 2 可以取消乘以 2 造成的效果。
x^{2}+\frac{5}{2}x=4
8 除以 2。
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=4+\left(\frac{5}{4}\right)^{2}
將 \frac{5}{2} (x 項的係數) 除以 2 可得到 \frac{5}{4}。接著,將 \frac{5}{4} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+\frac{5}{2}x+\frac{25}{16}=4+\frac{25}{16}
\frac{5}{4} 的平方是將分式的分子和分母兩個都平方。
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{89}{16}
將 4 加到 \frac{25}{16}。
\left(x+\frac{5}{4}\right)^{2}=\frac{89}{16}
因數分解 x^{2}+\frac{5}{2}x+\frac{25}{16}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{89}{16}}
取方程式兩邊的平方根。
x+\frac{5}{4}=\frac{\sqrt{89}}{4} x+\frac{5}{4}=-\frac{\sqrt{89}}{4}
化簡。
x=\frac{\sqrt{89}-5}{4} x=\frac{-\sqrt{89}-5}{4}
從方程式兩邊減去 \frac{5}{4}。