解 x
x=-1
x=\frac{1}{2}=0.5
圖表
共享
已復制到剪貼板
2x^{2}+11x+9-10x=10
從兩邊減去 10x。
2x^{2}+x+9=10
合併 11x 和 -10x 以取得 x。
2x^{2}+x+9-10=0
從兩邊減去 10。
2x^{2}+x-1=0
從 9 減去 10 會得到 -1。
a+b=1 ab=2\left(-1\right)=-2
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 2x^{2}+ax+bx-1。 若要取得 a 和 b,請預設求解的方程式。
a=-1 b=2
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 唯一的此類組合為系統解。
\left(2x^{2}-x\right)+\left(2x-1\right)
將 2x^{2}+x-1 重寫為 \left(2x^{2}-x\right)+\left(2x-1\right)。
x\left(2x-1\right)+2x-1
因式分解 2x^{2}-x 中的 x。
\left(2x-1\right)\left(x+1\right)
使用分配律來因式分解常用項 2x-1。
x=\frac{1}{2} x=-1
若要尋找方程式方案,請求解 2x-1=0 並 x+1=0。
2x^{2}+11x+9-10x=10
從兩邊減去 10x。
2x^{2}+x+9=10
合併 11x 和 -10x 以取得 x。
2x^{2}+x+9-10=0
從兩邊減去 10。
2x^{2}+x-1=0
從 9 減去 10 會得到 -1。
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 2 代入 a,將 1 代入 b,以及將 -1 代入 c。
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
對 1 平方。
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
-4 乘上 2。
x=\frac{-1±\sqrt{1+8}}{2\times 2}
-8 乘上 -1。
x=\frac{-1±\sqrt{9}}{2\times 2}
將 1 加到 8。
x=\frac{-1±3}{2\times 2}
取 9 的平方根。
x=\frac{-1±3}{4}
2 乘上 2。
x=\frac{2}{4}
現在解出 ± 為正號時的方程式 x=\frac{-1±3}{4}。 將 -1 加到 3。
x=\frac{1}{2}
透過找出與消去 2,對分式 \frac{2}{4} 約分至最低項。
x=-\frac{4}{4}
現在解出 ± 為負號時的方程式 x=\frac{-1±3}{4}。 從 -1 減去 3。
x=-1
-4 除以 4。
x=\frac{1}{2} x=-1
現已成功解出方程式。
2x^{2}+11x+9-10x=10
從兩邊減去 10x。
2x^{2}+x+9=10
合併 11x 和 -10x 以取得 x。
2x^{2}+x=10-9
從兩邊減去 9。
2x^{2}+x=1
從 10 減去 9 會得到 1。
\frac{2x^{2}+x}{2}=\frac{1}{2}
將兩邊同時除以 2。
x^{2}+\frac{1}{2}x=\frac{1}{2}
除以 2 可以取消乘以 2 造成的效果。
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
將 \frac{1}{2} (x 項的係數) 除以 2 可得到 \frac{1}{4}。接著,將 \frac{1}{4} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
\frac{1}{4} 的平方是將分式的分子和分母兩個都平方。
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
將 \frac{1}{2} 與 \frac{1}{16} 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
因數分解 x^{2}+\frac{1}{2}x+\frac{1}{16}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
取方程式兩邊的平方根。
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
化簡。
x=\frac{1}{2} x=-1
從方程式兩邊減去 \frac{1}{4}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}