解 x
x=-1
x=2
圖表
共享
已復制到剪貼板
2x+4-2x^{2}=0
從兩邊減去 2x^{2}。
x+2-x^{2}=0
將兩邊同時除以 2。
-x^{2}+x+2=0
重新排列多項式,使其以標準式表示。由乘冪數最高的項目到乘冪數最低的項目依序排列。
a+b=1 ab=-2=-2
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 -x^{2}+ax+bx+2。 若要取得 a 和 b,請預設求解的方程式。
a=2 b=-1
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 唯一的此類組合為系統解。
\left(-x^{2}+2x\right)+\left(-x+2\right)
將 -x^{2}+x+2 重寫為 \left(-x^{2}+2x\right)+\left(-x+2\right)。
-x\left(x-2\right)-\left(x-2\right)
在第一個組因式分解是 -x,且第二個組是 -1。
\left(x-2\right)\left(-x-1\right)
使用分配律來因式分解常用項 x-2。
x=2 x=-1
若要尋找方程式方案,請求解 x-2=0 並 -x-1=0。
2x+4-2x^{2}=0
從兩邊減去 2x^{2}。
-2x^{2}+2x+4=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -2 代入 a,將 2 代入 b,以及將 4 代入 c。
x=\frac{-2±\sqrt{4-4\left(-2\right)\times 4}}{2\left(-2\right)}
對 2 平方。
x=\frac{-2±\sqrt{4+8\times 4}}{2\left(-2\right)}
-4 乘上 -2。
x=\frac{-2±\sqrt{4+32}}{2\left(-2\right)}
8 乘上 4。
x=\frac{-2±\sqrt{36}}{2\left(-2\right)}
將 4 加到 32。
x=\frac{-2±6}{2\left(-2\right)}
取 36 的平方根。
x=\frac{-2±6}{-4}
2 乘上 -2。
x=\frac{4}{-4}
現在解出 ± 為正號時的方程式 x=\frac{-2±6}{-4}。 將 -2 加到 6。
x=-1
4 除以 -4。
x=-\frac{8}{-4}
現在解出 ± 為負號時的方程式 x=\frac{-2±6}{-4}。 從 -2 減去 6。
x=2
-8 除以 -4。
x=-1 x=2
現已成功解出方程式。
2x+4-2x^{2}=0
從兩邊減去 2x^{2}。
2x-2x^{2}=-4
從兩邊減去 4。 從零減去任何項目的結果都會是該項目的負值。
-2x^{2}+2x=-4
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
\frac{-2x^{2}+2x}{-2}=-\frac{4}{-2}
將兩邊同時除以 -2。
x^{2}+\frac{2}{-2}x=-\frac{4}{-2}
除以 -2 可以取消乘以 -2 造成的效果。
x^{2}-x=-\frac{4}{-2}
2 除以 -2。
x^{2}-x=2
-4 除以 -2。
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
將 -1 (x 項的係數) 除以 2 可得到 -\frac{1}{2}。接著,將 -\frac{1}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
-\frac{1}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}-x+\frac{1}{4}=\frac{9}{4}
將 2 加到 \frac{1}{4}。
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
因數分解 x^{2}-x+\frac{1}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
取方程式兩邊的平方根。
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
化簡。
x=2 x=-1
將 \frac{1}{2} 加到方程式的兩邊。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}