跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

2x+3-x^{2}=0
從兩邊減去 x^{2}。
-x^{2}+2x+3=0
重新排列多項式,使其以標準式表示。由乘冪數最高的項目到乘冪數最低的項目依序排列。
a+b=2 ab=-3=-3
若要解出方程式,請對左邊進行分組因數分解。首先,左邊必須重寫為 -x^{2}+ax+bx+3。 若要取得 a 和 b,請預設求解的方程式。
a=3 b=-1
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 唯一的此類組合為系統解。
\left(-x^{2}+3x\right)+\left(-x+3\right)
將 -x^{2}+2x+3 重寫為 \left(-x^{2}+3x\right)+\left(-x+3\right)。
-x\left(x-3\right)-\left(x-3\right)
在第一個組因式分解是 -x,且第二個組是 -1。
\left(x-3\right)\left(-x-1\right)
使用分配律來因式分解常用項 x-3。
x=3 x=-1
若要尋找方程式方案,請求解 x-3=0 並 -x-1=0。
2x+3-x^{2}=0
從兩邊減去 x^{2}。
-x^{2}+2x+3=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -1 代入 a,將 2 代入 b,以及將 3 代入 c。
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
對 2 平方。
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 乘上 -1。
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
4 乘上 3。
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
將 4 加到 12。
x=\frac{-2±4}{2\left(-1\right)}
取 16 的平方根。
x=\frac{-2±4}{-2}
2 乘上 -1。
x=\frac{2}{-2}
現在解出 ± 為正號時的方程式 x=\frac{-2±4}{-2}。 將 -2 加到 4。
x=-1
2 除以 -2。
x=-\frac{6}{-2}
現在解出 ± 為負號時的方程式 x=\frac{-2±4}{-2}。 從 -2 減去 4。
x=3
-6 除以 -2。
x=-1 x=3
現已成功解出方程式。
2x+3-x^{2}=0
從兩邊減去 x^{2}。
2x-x^{2}=-3
從兩邊減去 3。 從零減去任何項目的結果都會是該項目的負值。
-x^{2}+2x=-3
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
將兩邊同時除以 -1。
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
除以 -1 可以取消乘以 -1 造成的效果。
x^{2}-2x=-\frac{3}{-1}
2 除以 -1。
x^{2}-2x=3
-3 除以 -1。
x^{2}-2x+1=3+1
將 -2 (x 項的係數) 除以 2 可得到 -1。接著,將 -1 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-2x+1=4
將 3 加到 1。
\left(x-1\right)^{2}=4
因數分解 x^{2}-2x+1。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
取方程式兩邊的平方根。
x-1=2 x-1=-2
化簡。
x=3 x=-1
將 1 加到方程式的兩邊。