跳到主要內容
解 a
Tick mark Image

來自 Web 搜索的類似問題

共享

2^{a+\frac{10}{3}}=18
用指數和對數的法則來解方程式。
\log(2^{a+\frac{10}{3}})=\log(18)
取方程式兩邊的對數。
\left(a+\frac{10}{3}\right)\log(2)=\log(18)
某數字乘冪的對數是乘冪數乘上該數字的對數。
a+\frac{10}{3}=\frac{\log(18)}{\log(2)}
將兩邊同時除以 \log(2)。
a+\frac{10}{3}=\log_{2}\left(18\right)
依據底數變更公式 \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)。
a=\log_{2}\left(18\right)-\frac{10}{3}
從方程式兩邊減去 \frac{10}{3}。