因式分解
\left(3r-2\right)\left(4r+5\right)s^{2}
評估
\left(3r-2\right)\left(4r+5\right)s^{2}
共享
已復制到剪貼板
s^{2}\left(12r^{2}+7r-10\right)
因式分解 s^{2}。
a+b=7 ab=12\left(-10\right)=-120
請考慮 12r^{2}+7r-10。 分組對運算式進行因數分解。首先,運算式必須重寫為 12r^{2}+ar+br-10。 若要取得 a 和 b,請預設求解的方程式。
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為正數,正數具有比負數更大的絕對值。 列出乘積為 -120 的所有此類整數組合。
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
計算每個組合的總和。
a=-8 b=15
該解的總和為 7。
\left(12r^{2}-8r\right)+\left(15r-10\right)
將 12r^{2}+7r-10 重寫為 \left(12r^{2}-8r\right)+\left(15r-10\right)。
4r\left(3r-2\right)+5\left(3r-2\right)
在第一個組因式分解是 4r,且第二個組是 5。
\left(3r-2\right)\left(4r+5\right)
使用分配律來因式分解常用項 3r-2。
s^{2}\left(3r-2\right)\left(4r+5\right)
重寫完整因數分解過的運算式。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}