跳到主要內容
解 x (復數求解)
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

x^{2}+3x+14=0
換邊,將所有變數項都置於左邊。
x=\frac{-3±\sqrt{3^{2}-4\times 14}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 3 代入 b,以及將 14 代入 c。
x=\frac{-3±\sqrt{9-4\times 14}}{2}
對 3 平方。
x=\frac{-3±\sqrt{9-56}}{2}
-4 乘上 14。
x=\frac{-3±\sqrt{-47}}{2}
將 9 加到 -56。
x=\frac{-3±\sqrt{47}i}{2}
取 -47 的平方根。
x=\frac{-3+\sqrt{47}i}{2}
現在解出 ± 為正號時的方程式 x=\frac{-3±\sqrt{47}i}{2}。 將 -3 加到 i\sqrt{47}。
x=\frac{-\sqrt{47}i-3}{2}
現在解出 ± 為負號時的方程式 x=\frac{-3±\sqrt{47}i}{2}。 從 -3 減去 i\sqrt{47}。
x=\frac{-3+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i-3}{2}
現已成功解出方程式。
x^{2}+3x+14=0
換邊,將所有變數項都置於左邊。
x^{2}+3x=-14
從兩邊減去 14。 從零減去任何項目的結果都會是該項目的負值。
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-14+\left(\frac{3}{2}\right)^{2}
將 3 (x 項的係數) 除以 2 可得到 \frac{3}{2}。接著,將 \frac{3}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+3x+\frac{9}{4}=-14+\frac{9}{4}
\frac{3}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}+3x+\frac{9}{4}=-\frac{47}{4}
將 -14 加到 \frac{9}{4}。
\left(x+\frac{3}{2}\right)^{2}=-\frac{47}{4}
因數分解 x^{2}+3x+\frac{9}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
取方程式兩邊的平方根。
x+\frac{3}{2}=\frac{\sqrt{47}i}{2} x+\frac{3}{2}=-\frac{\sqrt{47}i}{2}
化簡。
x=\frac{-3+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i-3}{2}
從方程式兩邊減去 \frac{3}{2}。