跳到主要內容
解 x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

-2x^{2}+2x+15=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\times 15}}{2\left(-2\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -2 代入 a,將 2 代入 b,以及將 15 代入 c。
x=\frac{-2±\sqrt{4-4\left(-2\right)\times 15}}{2\left(-2\right)}
對 2 平方。
x=\frac{-2±\sqrt{4+8\times 15}}{2\left(-2\right)}
-4 乘上 -2。
x=\frac{-2±\sqrt{4+120}}{2\left(-2\right)}
8 乘上 15。
x=\frac{-2±\sqrt{124}}{2\left(-2\right)}
將 4 加到 120。
x=\frac{-2±2\sqrt{31}}{2\left(-2\right)}
取 124 的平方根。
x=\frac{-2±2\sqrt{31}}{-4}
2 乘上 -2。
x=\frac{2\sqrt{31}-2}{-4}
現在解出 ± 為正號時的方程式 x=\frac{-2±2\sqrt{31}}{-4}。 將 -2 加到 2\sqrt{31}。
x=\frac{1-\sqrt{31}}{2}
-2+2\sqrt{31} 除以 -4。
x=\frac{-2\sqrt{31}-2}{-4}
現在解出 ± 為負號時的方程式 x=\frac{-2±2\sqrt{31}}{-4}。 從 -2 減去 2\sqrt{31}。
x=\frac{\sqrt{31}+1}{2}
-2-2\sqrt{31} 除以 -4。
x=\frac{1-\sqrt{31}}{2} x=\frac{\sqrt{31}+1}{2}
現已成功解出方程式。
-2x^{2}+2x+15=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
-2x^{2}+2x+15-15=-15
從方程式兩邊減去 15。
-2x^{2}+2x=-15
從 15 減去本身會剩下 0。
\frac{-2x^{2}+2x}{-2}=-\frac{15}{-2}
將兩邊同時除以 -2。
x^{2}+\frac{2}{-2}x=-\frac{15}{-2}
除以 -2 可以取消乘以 -2 造成的效果。
x^{2}-x=-\frac{15}{-2}
2 除以 -2。
x^{2}-x=\frac{15}{2}
-15 除以 -2。
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{2}\right)^{2}
將 -1 (x 項的係數) 除以 2 可得到 -\frac{1}{2}。接著,將 -\frac{1}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-x+\frac{1}{4}=\frac{15}{2}+\frac{1}{4}
-\frac{1}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}-x+\frac{1}{4}=\frac{31}{4}
將 \frac{15}{2} 與 \frac{1}{4} 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
\left(x-\frac{1}{2}\right)^{2}=\frac{31}{4}
因數分解 x^{2}-x+\frac{1}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{4}}
取方程式兩邊的平方根。
x-\frac{1}{2}=\frac{\sqrt{31}}{2} x-\frac{1}{2}=-\frac{\sqrt{31}}{2}
化簡。
x=\frac{\sqrt{31}+1}{2} x=\frac{1-\sqrt{31}}{2}
將 \frac{1}{2} 加到方程式的兩邊。