跳到主要內容
解 x (復數求解)
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

-\left(2x^{2}-2x+12\right)=0
變數 x 不能等於 -2,2 中的任何值,因為未定義除數為零。 對方程式兩邊同時乘上 \left(x-2\right)\left(-x-2\right)。
-2x^{2}+2x-12=0
若要尋找 2x^{2}-2x+12 的相反數,請尋找每項的相反數。
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 -2 代入 a,將 2 代入 b,以及將 -12 代入 c。
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
對 2 平方。
x=\frac{-2±\sqrt{4+8\left(-12\right)}}{2\left(-2\right)}
-4 乘上 -2。
x=\frac{-2±\sqrt{4-96}}{2\left(-2\right)}
8 乘上 -12。
x=\frac{-2±\sqrt{-92}}{2\left(-2\right)}
將 4 加到 -96。
x=\frac{-2±2\sqrt{23}i}{2\left(-2\right)}
取 -92 的平方根。
x=\frac{-2±2\sqrt{23}i}{-4}
2 乘上 -2。
x=\frac{-2+2\sqrt{23}i}{-4}
現在解出 ± 為正號時的方程式 x=\frac{-2±2\sqrt{23}i}{-4}。 將 -2 加到 2i\sqrt{23}。
x=\frac{-\sqrt{23}i+1}{2}
-2+2i\sqrt{23} 除以 -4。
x=\frac{-2\sqrt{23}i-2}{-4}
現在解出 ± 為負號時的方程式 x=\frac{-2±2\sqrt{23}i}{-4}。 從 -2 減去 2i\sqrt{23}。
x=\frac{1+\sqrt{23}i}{2}
-2-2i\sqrt{23} 除以 -4。
x=\frac{-\sqrt{23}i+1}{2} x=\frac{1+\sqrt{23}i}{2}
現已成功解出方程式。
-\left(2x^{2}-2x+12\right)=0
變數 x 不能等於 -2,2 中的任何值,因為未定義除數為零。 對方程式兩邊同時乘上 \left(x-2\right)\left(-x-2\right)。
-2x^{2}+2x-12=0
若要尋找 2x^{2}-2x+12 的相反數,請尋找每項的相反數。
-2x^{2}+2x=12
新增 12 至兩側。 任何項目加上零的結果都會是自己本身。
\frac{-2x^{2}+2x}{-2}=\frac{12}{-2}
將兩邊同時除以 -2。
x^{2}+\frac{2}{-2}x=\frac{12}{-2}
除以 -2 可以取消乘以 -2 造成的效果。
x^{2}-x=\frac{12}{-2}
2 除以 -2。
x^{2}-x=-6
12 除以 -2。
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
將 -1 (x 項的係數) 除以 2 可得到 -\frac{1}{2}。接著,將 -\frac{1}{2} 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}-x+\frac{1}{4}=-6+\frac{1}{4}
-\frac{1}{2} 的平方是將分式的分子和分母兩個都平方。
x^{2}-x+\frac{1}{4}=-\frac{23}{4}
將 -6 加到 \frac{1}{4}。
\left(x-\frac{1}{2}\right)^{2}=-\frac{23}{4}
因數分解 x^{2}-x+\frac{1}{4}。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
取方程式兩邊的平方根。
x-\frac{1}{2}=\frac{\sqrt{23}i}{2} x-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
化簡。
x=\frac{1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+1}{2}
將 \frac{1}{2} 加到方程式的兩邊。