( x - 1 ) ^ { 2 } y d x + x ^ { 2 } ( y + 1 ) d y = 0
解 d (復數求解)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=\frac{\sqrt{\left(y-1\right)^{2}-4}-y+1}{2}\text{ or }x=\frac{-\sqrt{\left(y-1\right)^{2}-4}-y+1}{2}\text{ or }x=0\text{ or }y=0\end{matrix}\right.
解 d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(x=\frac{\sqrt{y^{2}-2y-3}-y+1}{2}\text{ and }y\geq 3\right)\text{ or }\left(x=\frac{\sqrt{y^{2}-2y-3}-y+1}{2}\text{ and }y\leq -1\right)\text{ or }\left(x=\frac{-\sqrt{y^{2}-2y-3}-y+1}{2}\text{ and }y\geq 3\right)\text{ or }\left(x=\frac{-\sqrt{y^{2}-2y-3}-y+1}{2}\text{ and }y\leq -1\right)\text{ or }x=0\text{ or }y=0\end{matrix}\right.
解 x (復數求解)
\left\{\begin{matrix}\\x=\frac{-\sqrt{\left(y-3\right)\left(y+1\right)}-y+1}{2}\text{; }x=0\text{; }x=\frac{\sqrt{\left(y-3\right)\left(y+1\right)}-y+1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
解 x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{\sqrt{\left(y-3\right)\left(y+1\right)}-y+1}{2}\text{; }x=\frac{-\sqrt{\left(y-3\right)\left(y+1\right)}-y+1}{2}\text{, }&y\leq -1\text{ or }y\geq 3\\x\in \mathrm{R}\text{, }&d=0\text{ or }y=0\end{matrix}\right.
圖表
共享
已復制到剪貼板
\left(x^{2}-2x+1\right)ydx+x^{2}\left(y+1\right)dy=0
使用二項式定理 \left(a-b\right)^{2}=a^{2}-2ab+b^{2} 展開 \left(x-1\right)^{2}。
\left(x^{2}y-2xy+y\right)dx+x^{2}\left(y+1\right)dy=0
計算 x^{2}-2x+1 乘上 y 時使用乘法分配律。
\left(x^{2}yd-2xyd+yd\right)x+x^{2}\left(y+1\right)dy=0
計算 x^{2}y-2xy+y 乘上 d 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+x^{2}\left(y+1\right)dy=0
計算 x^{2}yd-2xyd+yd 乘上 x 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+\left(x^{2}y+x^{2}\right)dy=0
計算 x^{2} 乘上 y+1 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+\left(x^{2}yd+x^{2}d\right)y=0
計算 x^{2}y+x^{2} 乘上 d 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+x^{2}dy^{2}+x^{2}dy=0
計算 x^{2}yd+x^{2}d 乘上 y 時使用乘法分配律。
ydx^{3}-ydx^{2}+ydx+x^{2}dy^{2}=0
合併 -2ydx^{2} 和 x^{2}dy 以取得 -ydx^{2}。
\left(yx^{3}-yx^{2}+yx+x^{2}y^{2}\right)d=0
合併所有包含 d 的項。
\left(x^{2}y^{2}+xy+yx^{3}-yx^{2}\right)d=0
方程式為標準式。
d=0
0 除以 yx^{3}-yx^{2}+yx+x^{2}y^{2}。
\left(x^{2}-2x+1\right)ydx+x^{2}\left(y+1\right)dy=0
使用二項式定理 \left(a-b\right)^{2}=a^{2}-2ab+b^{2} 展開 \left(x-1\right)^{2}。
\left(x^{2}y-2xy+y\right)dx+x^{2}\left(y+1\right)dy=0
計算 x^{2}-2x+1 乘上 y 時使用乘法分配律。
\left(x^{2}yd-2xyd+yd\right)x+x^{2}\left(y+1\right)dy=0
計算 x^{2}y-2xy+y 乘上 d 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+x^{2}\left(y+1\right)dy=0
計算 x^{2}yd-2xyd+yd 乘上 x 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+\left(x^{2}y+x^{2}\right)dy=0
計算 x^{2} 乘上 y+1 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+\left(x^{2}yd+x^{2}d\right)y=0
計算 x^{2}y+x^{2} 乘上 d 時使用乘法分配律。
ydx^{3}-2ydx^{2}+ydx+x^{2}dy^{2}+x^{2}dy=0
計算 x^{2}yd+x^{2}d 乘上 y 時使用乘法分配律。
ydx^{3}-ydx^{2}+ydx+x^{2}dy^{2}=0
合併 -2ydx^{2} 和 x^{2}dy 以取得 -ydx^{2}。
\left(yx^{3}-yx^{2}+yx+x^{2}y^{2}\right)d=0
合併所有包含 d 的項。
\left(x^{2}y^{2}+xy+yx^{3}-yx^{2}\right)d=0
方程式為標準式。
d=0
0 除以 yx^{3}-yx^{2}+yx+x^{2}y^{2}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}