跳到主要內容
評估
Tick mark Image

來自 Web 搜索的類似問題

共享

3\sqrt{3}-\frac{2}{3}\sqrt{18}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
因數分解 27=3^{2}\times 3。 將產品 \sqrt{3^{2}\times 3} 的平方根重寫為平方根 \sqrt{3^{2}}\sqrt{3} 的乘積。 取 3^{2} 的平方根。
3\sqrt{3}-\frac{2}{3}\times 3\sqrt{2}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
因數分解 18=3^{2}\times 2。 將產品 \sqrt{3^{2}\times 2} 的平方根重寫為平方根 \sqrt{3^{2}}\sqrt{2} 的乘積。 取 3^{2} 的平方根。
3\sqrt{3}-2\sqrt{2}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
同時消去 3 和 3。
3\sqrt{3}-2\sqrt{2}-\left(\frac{\sqrt{4}}{\sqrt{3}}-4\sqrt{\frac{1}{2}}\right)
將相除後做平方根 \sqrt{\frac{4}{3}} 再寫成兩個平方根相除 \frac{\sqrt{4}}{\sqrt{3}}。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2}{\sqrt{3}}-4\sqrt{\frac{1}{2}}\right)
計算 4 的平方根,並得到 2。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{1}{2}}\right)
將分子和分母同時乘以 \sqrt{3},來有理化 \frac{2}{\sqrt{3}} 的分母。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\sqrt{\frac{1}{2}}\right)
\sqrt{3} 的平方是 3。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{1}}{\sqrt{2}}\right)
將相除後做平方根 \sqrt{\frac{1}{2}} 再寫成兩個平方根相除 \frac{\sqrt{1}}{\sqrt{2}}。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{1}{\sqrt{2}}\right)
計算 1 的平方根,並得到 1。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
將分子和分母同時乘以 \sqrt{2},來有理化 \frac{1}{\sqrt{2}} 的分母。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{2}\right)
\sqrt{2} 的平方是 2。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-2\sqrt{2}\right)
在 4 和 2 中同時消去最大公因數 2。
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}+\frac{3\left(-2\right)\sqrt{2}}{3}\right)
若要對運算式相加或相減,請先通分使其分母相同。 -2\sqrt{2} 乘上 \frac{3}{3}。
3\sqrt{3}-2\sqrt{2}-\frac{2\sqrt{3}+3\left(-2\right)\sqrt{2}}{3}
因為 \frac{2\sqrt{3}}{3} 和 \frac{3\left(-2\right)\sqrt{2}}{3} 的分母相同,所以將分子相加即可相加這兩個值。
3\sqrt{3}-2\sqrt{2}-\frac{2\sqrt{3}-6\sqrt{2}}{3}
計算 2\sqrt{3}+3\left(-2\right)\sqrt{2} 的乘法。
\frac{3\left(3\sqrt{3}-2\sqrt{2}\right)}{3}-\frac{2\sqrt{3}-6\sqrt{2}}{3}
若要對運算式相加或相減,請先通分使其分母相同。 3\sqrt{3}-2\sqrt{2} 乘上 \frac{3}{3}。
\frac{3\left(3\sqrt{3}-2\sqrt{2}\right)-\left(2\sqrt{3}-6\sqrt{2}\right)}{3}
因為 \frac{3\left(3\sqrt{3}-2\sqrt{2}\right)}{3} 和 \frac{2\sqrt{3}-6\sqrt{2}}{3} 的分母相同,所以將分子相減即可相減這兩個值。
\frac{9\sqrt{3}-6\sqrt{2}-2\sqrt{3}+6\sqrt{2}}{3}
計算 3\left(3\sqrt{3}-2\sqrt{2}\right)-\left(2\sqrt{3}-6\sqrt{2}\right) 的乘法。
\frac{7\sqrt{3}}{3}
計算 9\sqrt{3}-6\sqrt{2}-2\sqrt{3}+6\sqrt{2} 。