評估
\frac{1}{16r^{2}}
對 r 微分
-\frac{1}{8r^{3}}
共享
已復制到剪貼板
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
若要將 \frac{-r^{4}}{64r^{7}} 乘冪,將分子和分母同時自乘該乘冪的次數然後再相除。
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
展開 \left(64r^{7}\right)^{\frac{2}{3}}。
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
計算某數乘冪之乘冪的方法: 將指數相乘。7 乘 \frac{2}{3} 得到 \frac{14}{3}。
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
計算 64 的 \frac{2}{3} 乘冪,然後得到 16。
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
展開 \left(-r^{4}\right)^{\frac{2}{3}}。
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
計算某數乘冪之乘冪的方法: 將指數相乘。4 乘 \frac{2}{3} 得到 \frac{8}{3}。
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
計算 -1 的 \frac{2}{3} 乘冪,然後得到 1。
\frac{1}{16r^{2}}
在分子和分母中同時消去 r^{\frac{8}{3}}。
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
如果 F 是兩個可微分函式 f\left(u\right) 與 u=g\left(x\right) 的合成,也就是如果 F\left(x\right)=f\left(g\left(x\right)\right),則 F 的導數是 f 對 u 的導數乘上 g 對 x 的導數,也就是 \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)。
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
對於任何兩個可微分的函式,兩個函式商式的導數: 分母乘上分子的導數,減掉分子乘上分母的導數,然後全部除以分母的平方。
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
多項式的導數是其各項導數的總和。常數項的導數為 0。ax^{n} 的導數為 nax^{n-1}。
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
64r^{7} 乘上 4\left(-1\right)r^{4-1}。
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
-r^{4} 乘上 7\times 64r^{7-1}。
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
化簡。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}