跳到主要內容
因式分解
Tick mark Image
評估
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

a+b=-11 ab=1\left(-26\right)=-26
分組對運算式進行因數分解。首先,運算式必須重寫為 x^{2}+ax+bx-26。 若要取得 a 和 b,請預設求解的方程式。
1,-26 2,-13
因為 ab 為負數,a 和 b 具有相反的正負號。 因為 a+b 為負數,負數具有比正數更大的絕對值。 列出乘積為 -26 的所有此類整數組合。
1-26=-25 2-13=-11
計算每個組合的總和。
a=-13 b=2
該解的總和為 -11。
\left(x^{2}-13x\right)+\left(2x-26\right)
將 x^{2}-11x-26 重寫為 \left(x^{2}-13x\right)+\left(2x-26\right)。
x\left(x-13\right)+2\left(x-13\right)
在第一個組因式分解是 x,且第二個組是 2。
\left(x-13\right)\left(x+2\right)
使用分配律來因式分解常用項 x-13。
x^{2}-11x-26=0
可以使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 這個轉換方式來因數分解二次多項式,其中 x_{1} 與 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-26\right)}}{2}
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-26\right)}}{2}
對 -11 平方。
x=\frac{-\left(-11\right)±\sqrt{121+104}}{2}
-4 乘上 -26。
x=\frac{-\left(-11\right)±\sqrt{225}}{2}
將 121 加到 104。
x=\frac{-\left(-11\right)±15}{2}
取 225 的平方根。
x=\frac{11±15}{2}
-11 的相反數是 11。
x=\frac{26}{2}
現在解出 ± 為正號時的方程式 x=\frac{11±15}{2}。 將 11 加到 15。
x=13
26 除以 2。
x=-\frac{4}{2}
現在解出 ± 為負號時的方程式 x=\frac{11±15}{2}。 從 11 減去 15。
x=-2
-4 除以 2。
x^{2}-11x-26=\left(x-13\right)\left(x-\left(-2\right)\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 來因數分解原始的運算式。將 13 代入 x_{1} 並將 -2 代入 x_{2}。
x^{2}-11x-26=\left(x-13\right)\left(x+2\right)
將 p-\left(-q\right) 形式的所有運算式化簡為 p+q。