解 x
x=\frac{\sqrt{10}}{2}-1\approx 0.58113883
x=-\frac{\sqrt{10}}{2}-1\approx -2.58113883
圖表
共享
已復制到剪貼板
x^{2}+2x-\frac{3}{2}=0
所有這種 ax^{2}+bx+c=0 形式的方程式可以使用二次方程式公式: \frac{-b±\sqrt{b^{2}-4ac}}{2a} 來求解。二次方程式公式提供兩個解,一個是在 ± 中使用加法,另一個是使用減法。
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{3}{2}\right)}}{2}
此方程式是標準式: ax^{2}+bx+c=0。對二次方程式公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a},將 1 代入 a,將 2 代入 b,以及將 -\frac{3}{2} 代入 c。
x=\frac{-2±\sqrt{4-4\left(-\frac{3}{2}\right)}}{2}
對 2 平方。
x=\frac{-2±\sqrt{4+6}}{2}
-4 乘上 -\frac{3}{2}。
x=\frac{-2±\sqrt{10}}{2}
將 4 加到 6。
x=\frac{\sqrt{10}-2}{2}
現在解出 ± 為正號時的方程式 x=\frac{-2±\sqrt{10}}{2}。 將 -2 加到 \sqrt{10}。
x=\frac{\sqrt{10}}{2}-1
-2+\sqrt{10} 除以 2。
x=\frac{-\sqrt{10}-2}{2}
現在解出 ± 為負號時的方程式 x=\frac{-2±\sqrt{10}}{2}。 從 -2 減去 \sqrt{10}。
x=-\frac{\sqrt{10}}{2}-1
-2-\sqrt{10} 除以 2。
x=\frac{\sqrt{10}}{2}-1 x=-\frac{\sqrt{10}}{2}-1
現已成功解出方程式。
x^{2}+2x-\frac{3}{2}=0
與這個類似的二次方程式可透過配方法來求得解。為了配方,首先方程式必須為此形式 x^{2}+bx=c。
x^{2}+2x-\frac{3}{2}-\left(-\frac{3}{2}\right)=-\left(-\frac{3}{2}\right)
將 \frac{3}{2} 加到方程式的兩邊。
x^{2}+2x=-\left(-\frac{3}{2}\right)
從 -\frac{3}{2} 減去本身會剩下 0。
x^{2}+2x=\frac{3}{2}
從 0 減去 -\frac{3}{2}。
x^{2}+2x+1^{2}=\frac{3}{2}+1^{2}
將 2 (x 項的係數) 除以 2 可得到 1。接著,將 1 的平方加到方程式的兩邊。這個步驟可讓方程式的左邊成為完全平方。
x^{2}+2x+1=\frac{3}{2}+1
對 1 平方。
x^{2}+2x+1=\frac{5}{2}
將 \frac{3}{2} 加到 1。
\left(x+1\right)^{2}=\frac{5}{2}
因數分解 x^{2}+2x+1。一般而言,當 x^{2}+bx+c 是完全平方時,一律可以因數分解為 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{5}{2}}
取方程式兩邊的平方根。
x+1=\frac{\sqrt{10}}{2} x+1=-\frac{\sqrt{10}}{2}
化簡。
x=\frac{\sqrt{10}}{2}-1 x=-\frac{\sqrt{10}}{2}-1
從方程式兩邊減去 1。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}