驗證
真
共享
已復制到剪貼板
\sqrt[3]{3^{3}+3+1}=\sqrt[3]{31}
將 3 除以 3 以得到 1。
\sqrt[3]{27+3+1}=\sqrt[3]{31}
計算 3 的 3 乘冪,然後得到 27。
\sqrt[3]{30+1}=\sqrt[3]{31}
將 27 與 3 相加可以得到 30。
\sqrt[3]{31}=\sqrt[3]{31}
將 30 與 1 相加可以得到 31。
\sqrt[3]{31}-\sqrt[3]{31}=0
從兩邊減去 \sqrt[3]{31}。
0=0
合併 \sqrt[3]{31} 和 -\sqrt[3]{31} 以取得 0。
\text{true}
比較 0 和 0。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}