評估
\frac{\sqrt{9688405}}{11}\approx 282.965479891
共享
已復制到剪貼板
\sqrt{\frac{\left(169-\left(0\times 7\right)^{2}+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
計算 13 的 2 乘冪,然後得到 169。
\sqrt{\frac{\left(169-0^{2}+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
將 0 乘上 7 得到 0。
\sqrt{\frac{\left(169-0+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
計算 0 的 2 乘冪,然後得到 0。
\sqrt{\frac{\left(169+32\right)^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
從 169 減去 0 會得到 169。
\sqrt{\frac{201^{2}}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
將 169 與 32 相加可以得到 201。
\sqrt{\frac{40401}{11^{2}}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
計算 201 的 2 乘冪,然後得到 40401。
\sqrt{\frac{40401}{121}\times 5+\left(28^{2}-0\times 23\right)\times 10^{2}}
計算 11 的 2 乘冪,然後得到 121。
\sqrt{\frac{202005}{121}+\left(28^{2}-0\times 23\right)\times 10^{2}}
將 \frac{40401}{121} 乘上 5 得到 \frac{202005}{121}。
\sqrt{\frac{202005}{121}+\left(784-0\times 23\right)\times 10^{2}}
計算 28 的 2 乘冪,然後得到 784。
\sqrt{\frac{202005}{121}+\left(784-0\right)\times 10^{2}}
將 0 乘上 23 得到 0。
\sqrt{\frac{202005}{121}+784\times 10^{2}}
從 784 減去 0 會得到 784。
\sqrt{\frac{202005}{121}+784\times 100}
計算 10 的 2 乘冪,然後得到 100。
\sqrt{\frac{202005}{121}+78400}
將 784 乘上 100 得到 78400。
\sqrt{\frac{9688405}{121}}
將 \frac{202005}{121} 與 78400 相加可以得到 \frac{9688405}{121}。
\frac{\sqrt{9688405}}{\sqrt{121}}
將相除後做平方根 \sqrt{\frac{9688405}{121}} 再寫成兩個平方根相除 \frac{\sqrt{9688405}}{\sqrt{121}}。
\frac{\sqrt{9688405}}{11}
計算 121 的平方根,並得到 11。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}