跳到主要內容
對 x_2 微分
Tick mark Image
評估
Tick mark Image

來自 Web 搜索的類似問題

共享

\frac{\mathrm{d}}{\mathrm{d}x_{2}}(\sin(x_{2}))=\left(\lim_{h\to 0}\frac{\sin(x_{2}+h)-\sin(x_{2})}{h}\right)
對函式 f\left(x\right),導數是當 h 逼近 0 時 \frac{f\left(x+h\right)-f\left(x\right)}{h} 的極限值 (如果極限值存在的話)。
\lim_{h\to 0}\frac{\sin(x_{2}+h)-\sin(x_{2})}{h}
使用正弦的合計公式。
\lim_{h\to 0}\frac{\sin(x_{2})\left(\cos(h)-1\right)+\cos(x_{2})\sin(h)}{h}
因式分解 \sin(x_{2})。
\left(\lim_{h\to 0}\sin(x_{2})\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x_{2})\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
改寫極限。
\sin(x_{2})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x_{2})\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
計算 h 逼近 0 時的極限值,可以利用 x_{2} 是常數的事實。
\sin(x_{2})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x_{2})
limit \lim_{x_{2}\to 0}\frac{\sin(x_{2})}{x_{2}} 為 1。
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
計算 limit \lim_{h\to 0}\frac{\cos(h)-1}{h} 的方法: 先將分母與分子乘上 \cos(h)+1。
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 乘上 \cos(h)-1。
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
使用平方關係式。
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
改寫極限。
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
limit \lim_{x_{2}\to 0}\frac{\sin(x_{2})}{x_{2}} 為 1。
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
利用 \frac{\sin(h)}{\cos(h)+1} 在 0 上是連續的事實。
\cos(x_{2})
將值 0 代入運算式 \sin(x_{2})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x_{2})。