\operatorname { de } ^ { J } = \sqrt[ 3 ] { \frac { 10 ^ { 29 } } { 10 ^ { 5 } } }
解 J (復數求解)
J=\frac{2\pi n_{1}i}{\ln(d)+1}+\frac{8\ln(10)}{\ln(d)+1}
n_{1}\in \mathrm{Z}
d\neq \frac{1}{e}\text{ and }d\neq 0
解 d (復數求解)
d=e^{-\frac{2\pi n_{1}iRe(J)}{\left(Re(J)\right)^{2}+\left(Im(J)\right)^{2}}+\frac{-\left(Re(J)\right)^{2}-\left(Im(J)\right)^{2}}{\left(Re(J)\right)^{2}+\left(Im(J)\right)^{2}}-\frac{2\pi n_{1}Im(J)}{\left(Re(J)\right)^{2}+\left(Im(J)\right)^{2}}}\times 100000000^{\frac{Re(J)}{\left(Re(J)\right)^{2}+\left(Im(J)\right)^{2}}}\times 10^{-\frac{8iIm(J)}{\left(Re(J)\right)^{2}+\left(Im(J)\right)^{2}}}
n_{1}\in \mathrm{Z}
\left(Re(J)\right)^{2}+\left(Im(J)\right)^{2}\neq 0
解 J
J=\frac{8\ln(10)}{\ln(d)+1}
d\neq \frac{1}{e}\text{ and }d>0
解 d
\left\{\begin{matrix}d=-\frac{100000000^{\frac{1}{J}}}{e}\text{, }&J\neq 0\text{ and }Numerator(J)\text{bmod}2=0\text{ and }Denominator(J)\text{bmod}2=1\\d=\frac{100000000^{\frac{1}{J}}}{e}\text{, }&J\neq 0\end{matrix}\right.
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}