跳到主要內容
解 x、y
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

x+2y=4,3x+y=5
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
x+2y=4
選擇其中一個方程式並使用下列方式解出 x: 將 x 單獨置於等號的左邊。
x=-2y+4
從方程式兩邊減去 2y。
3\left(-2y+4\right)+y=5
在另一個方程式 3x+y=5 中以 -2y+4 代入 x在方程式。
-6y+12+y=5
3 乘上 -2y+4。
-5y+12=5
將 -6y 加到 y。
-5y=-7
從方程式兩邊減去 12。
y=\frac{7}{5}
將兩邊同時除以 -5。
x=-2\times \frac{7}{5}+4
在 x=-2y+4 中以 \frac{7}{5} 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=-\frac{14}{5}+4
-2 乘上 \frac{7}{5}。
x=\frac{6}{5}
將 4 加到 -\frac{14}{5}。
x=\frac{6}{5},y=\frac{7}{5}
現已成功解出系統。
x+2y=4,3x+y=5
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}1&2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1&2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}1&2\\3&1\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 3}&-\frac{2}{1-2\times 3}\\-\frac{3}{1-2\times 3}&\frac{1}{1-2\times 3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
計算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 4+\frac{2}{5}\times 5\\\frac{3}{5}\times 4-\frac{1}{5}\times 5\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{7}{5}\end{matrix}\right)
計算。
x=\frac{6}{5},y=\frac{7}{5}
解出矩陣元素 x 和 y。
x+2y=4,3x+y=5
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
3x+3\times 2y=3\times 4,3x+y=5
讓 x 和 3x 相等的方法: 將第一個方程式兩邊的所有項目都乘上 3,以及將第二個方程式兩邊的所有項目都乘上 1。
3x+6y=12,3x+y=5
化簡。
3x-3x+6y-y=12-5
透過在等號兩邊減去同類項的方式,從 3x+6y=12 減去 3x+y=5。
6y-y=12-5
將 3x 加到 -3x。 3x 和 -3x 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
5y=12-5
將 6y 加到 -y。
5y=7
將 12 加到 -5。
y=\frac{7}{5}
將兩邊同時除以 5。
3x+\frac{7}{5}=5
在 3x+y=5 中以 \frac{7}{5} 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
3x=\frac{18}{5}
從方程式兩邊減去 \frac{7}{5}。
x=\frac{6}{5}
將兩邊同時除以 3。
x=\frac{6}{5},y=\frac{7}{5}
現已成功解出系統。