跳到主要內容
解 y、x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

y+x=-5
考慮第一個方程式。 新增 x 至兩側。
y-x=5
考慮第二個方程式。 從兩邊減去 x。
y+x=-5,y-x=5
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
y+x=-5
選擇其中一個方程式並使用下列方式解出 y: 將 y 單獨置於等號的左邊。
y=-x-5
從方程式兩邊減去 x。
-x-5-x=5
在另一個方程式 y-x=5 中以 -x-5 代入 y在方程式。
-2x-5=5
將 -x 加到 -x。
-2x=10
將 5 加到方程式的兩邊。
x=-5
將兩邊同時除以 -2。
y=-\left(-5\right)-5
在 y=-x-5 中以 -5 代入 x。因為產生的方程式包含只有一個變數,您可以直接解出 y。
y=5-5
-1 乘上 -5。
y=0
將 -5 加到 5。
y=0,x=-5
現已成功解出系統。
y+x=-5
考慮第一個方程式。 新增 x 至兩側。
y-x=5
考慮第二個方程式。 從兩邊減去 x。
y+x=-5,y-x=5
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\5\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-5\\5\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}1&1\\1&-1\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-5\\5\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}-5\\5\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}-5\\5\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-5\\5\end{matrix}\right)
計算。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-5\right)+\frac{1}{2}\times 5\\\frac{1}{2}\left(-5\right)-\frac{1}{2}\times 5\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
計算。
y=0,x=-5
解出矩陣元素 y 和 x。
y+x=-5
考慮第一個方程式。 新增 x 至兩側。
y-x=5
考慮第二個方程式。 從兩邊減去 x。
y+x=-5,y-x=5
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
y-y+x+x=-5-5
透過在等號兩邊減去同類項的方式,從 y+x=-5 減去 y-x=5。
x+x=-5-5
將 y 加到 -y。 y 和 -y 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
2x=-5-5
將 x 加到 x。
2x=-10
將 -5 加到 -5。
x=-5
將兩邊同時除以 2。
y-\left(-5\right)=5
在 y-x=5 中以 -5 代入 x。因為產生的方程式包含只有一個變數,您可以直接解出 y。
y+5=5
-1 乘上 -5。
y=0
從方程式兩邊減去 5。
y=0,x=-5
現已成功解出系統。