解 x、y
x=-2
y=-5
圖表
共享
已復制到剪貼板
x-y=3,x+y=-7
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
x-y=3
選擇其中一個方程式並使用下列方式解出 x: 將 x 單獨置於等號的左邊。
x=y+3
將 y 加到方程式的兩邊。
y+3+y=-7
在另一個方程式 x+y=-7 中以 y+3 代入 x在方程式。
2y+3=-7
將 y 加到 y。
2y=-10
從方程式兩邊減去 3。
y=-5
將兩邊同時除以 2。
x=-5+3
在 x=y+3 中以 -5 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=-2
將 3 加到 -5。
x=-2,y=-5
現已成功解出系統。
x-y=3,x+y=-7
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-7\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3\\-7\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}1&-1\\1&1\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3\\-7\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3\\-7\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-7\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\-7\end{matrix}\right)
計算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3+\frac{1}{2}\left(-7\right)\\-\frac{1}{2}\times 3+\frac{1}{2}\left(-7\right)\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-5\end{matrix}\right)
計算。
x=-2,y=-5
解出矩陣元素 x 和 y。
x-y=3,x+y=-7
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
x-x-y-y=3+7
透過在等號兩邊減去同類項的方式,從 x-y=3 減去 x+y=-7。
-y-y=3+7
將 x 加到 -x。 x 和 -x 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
-2y=3+7
將 -y 加到 -y。
-2y=10
將 3 加到 7。
y=-5
將兩邊同時除以 -2。
x-5=-7
在 x+y=-7 中以 -5 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=-2
將 5 加到方程式的兩邊。
x=-2,y=-5
現已成功解出系統。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}