解 n_1、n、n_2 (復數求解)
n_{1}=\frac{38}{n_{2}}
n\in \mathrm{C}
n_{2}=e^{-\frac{2\pi n_{1}\left(Im(n)+iRe(n)\right)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}\times 27^{\frac{Re(n)-iIm(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}
n_{1}\in \mathrm{Z}
解 n_1、n、n_2
\left\{\begin{matrix}\\n_{1}=\frac{38}{n_{2}}\text{, }n=\frac{3\ln(3)}{-\ln(n_{2})+\ln(38)}\text{, }n_{2}\in \left(0,38\right)\text{; }n_{1}=\frac{38}{n_{2}}\text{, }n=\frac{3\ln(3)}{-\ln(n_{2})+\ln(38)}\text{, }n_{2}>38\text{, }&\text{unconditionally}\\n_{1}=\frac{38}{n_{2}}\text{, }n=\frac{3\ln(3)}{3\ln(-\frac{1}{\sqrt[3]{n_{2}}})+\ln(38)}\text{, }n_{2}<-38\text{; }n_{1}=\frac{38}{n_{2}}\text{, }n=\frac{3\ln(3)}{3\ln(-\frac{1}{\sqrt[3]{n_{2}}})+\ln(38)}\text{, }n_{2}\in \left(-38,0\right)\text{, }&n_{2}\neq -38\text{ and }n_{2}<0\text{ and }Numerator(\frac{\ln(3)}{\ln(-\frac{1}{\sqrt[3]{n_{2}}})+\frac{\ln(38)}{3}})\text{bmod}2=0\text{ and }Denominator(\frac{\ln(3)}{\ln(-\frac{1}{\sqrt[3]{n_{2}}})+\frac{\ln(38)}{3}})\text{bmod}2=1\end{matrix}\right.
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}