跳到主要內容
解 x、y
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

4x+3y=13,3x+6y=26
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
4x+3y=13
選擇其中一個方程式並使用下列方式解出 x: 將 x 單獨置於等號的左邊。
4x=-3y+13
從方程式兩邊減去 3y。
x=\frac{1}{4}\left(-3y+13\right)
將兩邊同時除以 4。
x=-\frac{3}{4}y+\frac{13}{4}
\frac{1}{4} 乘上 -3y+13。
3\left(-\frac{3}{4}y+\frac{13}{4}\right)+6y=26
在另一個方程式 3x+6y=26 中以 \frac{-3y+13}{4} 代入 x在方程式。
-\frac{9}{4}y+\frac{39}{4}+6y=26
3 乘上 \frac{-3y+13}{4}。
\frac{15}{4}y+\frac{39}{4}=26
將 -\frac{9y}{4} 加到 6y。
\frac{15}{4}y=\frac{65}{4}
從方程式兩邊減去 \frac{39}{4}。
y=\frac{13}{3}
對方程式的兩邊同時除以 \frac{15}{4},與兩邊同時乘上該分式的倒數一樣。
x=-\frac{3}{4}\times \frac{13}{3}+\frac{13}{4}
在 x=-\frac{3}{4}y+\frac{13}{4} 中以 \frac{13}{3} 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=\frac{-13+13}{4}
-\frac{3}{4} 乘上 \frac{13}{3} 的算法: 將分子和分子相乘以及將分母和分母相乘。然後找到最簡分式。
x=0
將 \frac{13}{4} 與 -\frac{13}{4} 相加的算法: 先通分,接著相加分子,然後將分式化為最簡分式。
x=0,y=\frac{13}{3}
現已成功解出系統。
4x+3y=13,3x+6y=26
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}4&3\\3&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\26\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}4&3\\3&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}13\\26\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}4&3\\3&6\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}13\\26\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}13\\26\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-3\times 3}&-\frac{3}{4\times 6-3\times 3}\\-\frac{3}{4\times 6-3\times 3}&\frac{4}{4\times 6-3\times 3}\end{matrix}\right)\left(\begin{matrix}13\\26\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}13\\26\end{matrix}\right)
計算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 13-\frac{1}{5}\times 26\\-\frac{1}{5}\times 13+\frac{4}{15}\times 26\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{13}{3}\end{matrix}\right)
計算。
x=0,y=\frac{13}{3}
解出矩陣元素 x 和 y。
4x+3y=13,3x+6y=26
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
3\times 4x+3\times 3y=3\times 13,4\times 3x+4\times 6y=4\times 26
讓 4x 和 3x 相等的方法: 將第一個方程式兩邊的所有項目都乘上 3,以及將第二個方程式兩邊的所有項目都乘上 4。
12x+9y=39,12x+24y=104
化簡。
12x-12x+9y-24y=39-104
透過在等號兩邊減去同類項的方式,從 12x+9y=39 減去 12x+24y=104。
9y-24y=39-104
將 12x 加到 -12x。 12x 和 -12x 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
-15y=39-104
將 9y 加到 -24y。
-15y=-65
將 39 加到 -104。
y=\frac{13}{3}
將兩邊同時除以 -15。
3x+6\times \frac{13}{3}=26
在 3x+6y=26 中以 \frac{13}{3} 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
3x+26=26
6 乘上 \frac{13}{3}。
3x=0
從方程式兩邊減去 26。
x=0
將兩邊同時除以 3。
x=0,y=\frac{13}{3}
現已成功解出系統。