跳到主要內容
解 x、y
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

2x+y=0,x-2y=0
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
2x+y=0
選擇其中一個方程式並使用下列方式解出 x: 將 x 單獨置於等號的左邊。
2x=-y
從方程式兩邊減去 y。
x=\frac{1}{2}\left(-1\right)y
將兩邊同時除以 2。
x=-\frac{1}{2}y
\frac{1}{2} 乘上 -y。
-\frac{1}{2}y-2y=0
在另一個方程式 x-2y=0 中以 -\frac{y}{2} 代入 x在方程式。
-\frac{5}{2}y=0
將 -\frac{y}{2} 加到 -2y。
y=0
對方程式的兩邊同時除以 -\frac{5}{2},與兩邊同時乘上該分式的倒數一樣。
x=0
在 x=-\frac{1}{2}y 中以 0 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=0,y=0
現已成功解出系統。
2x+y=0,x-2y=0
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}2&1\\1&-2\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-1}&-\frac{1}{2\left(-2\right)-1}\\-\frac{1}{2\left(-2\right)-1}&\frac{2}{2\left(-2\right)-1}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
計算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
矩陣相乘。
x=0,y=0
解出矩陣元素 x 和 y。
2x+y=0,x-2y=0
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
2x+y=0,2x+2\left(-2\right)y=0
讓 2x 和 x 相等的方法: 將第一個方程式兩邊的所有項目都乘上 1,以及將第二個方程式兩邊的所有項目都乘上 2。
2x+y=0,2x-4y=0
化簡。
2x-2x+y+4y=0
透過在等號兩邊減去同類項的方式,從 2x+y=0 減去 2x-4y=0。
y+4y=0
將 2x 加到 -2x。 2x 和 -2x 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
5y=0
將 y 加到 4y。
y=0
將兩邊同時除以 5。
x=0
在 x-2y=0 中以 0 代入 y。因為產生的方程式包含只有一個變數,您可以直接解出 x。
x=0,y=0
現已成功解出系統。