解 v、w、x、y、z、a、b、c
c=-24
共享
已復制到剪貼板
v=-5-5\left(-3\right)-4+7\left(-2\right)
考慮第一個方程式。 從 -4 減去 1 會得到 -5。
v=-5-\left(-15\right)-4+7\left(-2\right)
將 5 乘上 -3 得到 -15。
v=-5+15-4+7\left(-2\right)
-15 的相反數是 15。
v=10-4+7\left(-2\right)
將 -5 與 15 相加可以得到 10。
v=6+7\left(-2\right)
從 10 減去 4 會得到 6。
v=6-14
將 7 乘上 -2 得到 -14。
v=-8
從 6 減去 14 會得到 -8。
w=-8-10-\left(-1\right)-3-2\times 3+2
考慮第二個方程式。 將已知的變數值插入到方程式中。
w=-18-\left(-1\right)-3-2\times 3+2
從 -8 減去 10 會得到 -18。
w=-18+1-3-2\times 3+2
-1 的相反數是 1。
w=-17-3-2\times 3+2
將 -18 與 1 相加可以得到 -17。
w=-20-2\times 3+2
從 -17 減去 3 會得到 -20。
w=-20-6+2
將 2 乘上 3 得到 6。
w=-26+2
從 -20 減去 6 會得到 -26。
w=-24
將 -26 與 2 相加可以得到 -24。
x=-24
考慮第三個方程式。 將已知的變數值插入到方程式中。
y=-24
考慮第四個方程式。 將已知的變數值插入到方程式中。
z=-24
考慮第五個方程式。 將已知的變數值插入到方程式中。
a=-24
考慮方程式 (6)。 將已知的變數值插入到方程式中。
b=-24
考慮方程式 (7)。 將已知的變數值插入到方程式中。
c=-24
考慮方程式 (8)。 將已知的變數值插入到方程式中。
v=-8 w=-24 x=-24 y=-24 z=-24 a=-24 b=-24 c=-24
現已成功解出系統。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}