解 x、y、z、a、b (復數求解)
x=2\pi n_{1}-i\ln(5-2\sqrt{6})\text{, }n_{1}\in \mathrm{Z}\text{, }y=5\text{, }z=5\text{, }a=5\text{, }b=5
x=2\pi n_{2}-i\ln(2\sqrt{6}+5)\text{, }n_{2}\in \mathrm{Z}\text{, }y=5\text{, }z=5\text{, }a=5\text{, }b=5
x=2\pi n_{3}+\frac{5\pi }{3}\text{, }n_{3}\in \mathrm{Z}\text{, }y=\frac{1}{2}=0.5\text{, }z=\frac{1}{2}=0.5\text{, }a=\frac{1}{2}=0.5\text{, }b=\frac{1}{2}=0.5
x=2\pi n_{4}+\frac{\pi }{3}\text{, }n_{4}\in \mathrm{Z}\text{, }y=\frac{1}{2}=0.5\text{, }z=\frac{1}{2}=0.5\text{, }a=\frac{1}{2}=0.5\text{, }b=\frac{1}{2}=0.5
解 x、y、z、a、b
x=2\pi n_{1}+\frac{\pi }{3}\text{, }n_{1}\in \mathrm{Z}\text{, }y=\frac{1}{2}=0.5\text{, }z=\frac{1}{2}=0.5\text{, }a=\frac{1}{2}=0.5\text{, }b=\frac{1}{2}=0.5
x=2\pi n_{2}+\frac{5\pi }{3}\text{, }n_{2}\in \mathrm{Z}\text{, }y=\frac{1}{2}=0.5\text{, }z=\frac{1}{2}=0.5\text{, }a=\frac{1}{2}=0.5\text{, }b=\frac{1}{2}=0.5
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}