解 x、y、z、a、b、c、d (復數求解)
x=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
n_{1}\in \mathrm{Z}
y=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
n_{1}\in \mathrm{Z}
z\in \cup n_{1},\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
n_{1}\in \mathrm{Z}
a\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
n_{1}\in \mathrm{Z}
b\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
a=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{ and }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\right)
n_{1}\in \mathrm{Z}
c\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
b=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{ and }a=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{ and }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\right)
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{, }z=\left(\ln(3)+2i\pi n_{1}\right)\ln(2)^{-1}\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}\text{, }d\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{, }c=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{ and }b=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{ and }a=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{ and }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{, }z=\left(\ln(3)+2i\pi n_{1}\right)\ln(2)^{-1}\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{, }z=\left(\ln(3)+2i\pi n_{1}\right)\ln(2)^{-1}\right)\right)\right)\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }b=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)\text{, }a=\left(\ln(3)+2i\pi n_{1}\right)\ln(2)^{-1}\text{ and }z=\left(\ln(3)+2i\pi n_{1}\right)\ln(2)^{-1}\right)\right)\right)\right)\right)\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\left(\ln(3)+2i\pi n_{1}\right)\ln(2)^{-1}\right)\right)\right)\right)\text{, }n_{1}\in \mathrm{Z}
解 x、y、z、a、b、c、d
d=\log_{2}\left(3\right)\approx 1.584962501
共享
已復制到剪貼板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角學
4 \sin \theta \cos \theta = 2 \sin \theta
線性方程
y = 3x + 4
算術
699 * 533
矩陣
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
聯立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}