跳到主要內容
評估
Tick mark Image

來自 Web 搜索的類似問題

共享

det(\left(\begin{matrix}i&j&k\\1&-1&-1\\-1&1&-2\end{matrix}\right))
使用對角線方法來求得矩陣的行列式。
\left(\begin{matrix}i&j&k&i&j\\1&-1&-1&1&-1\\-1&1&-2&-1&1\end{matrix}\right)
透過重複前兩行當作第四和第五行,展開原本的矩陣。
-i\left(-2\right)+j\left(-1\right)\left(-1\right)+k=j+k+2i
從左上角的項目開始,沿著對角線向下相乘,然後加上乘積。
-\left(-1\right)k-i-2j=-i+k-2j
從左下角的項目開始,沿著對角線向上相乘,然後加上乘積。
j+k+2i-\left(-i+k-2j\right)
從向下對角線乘積的合計減去向上對角線乘積的合計。
3j+3i
從 2i+j+k 減去 k-i-2j。
det(\left(\begin{matrix}i&j&k\\1&-1&-1\\-1&1&-2\end{matrix}\right))
使用依照行列展開 (也稱為餘因子展開) 的方法來求得矩陣的行列式。
idet(\left(\begin{matrix}-1&-1\\1&-2\end{matrix}\right))-jdet(\left(\begin{matrix}1&-1\\-1&-2\end{matrix}\right))+kdet(\left(\begin{matrix}1&-1\\-1&1\end{matrix}\right))
展開行列的方法: 將第一列的每個元素乘上其子式,也就是透過刪除包含該元素的列和欄,建立 2\times 2 矩陣的行列式,然後乘上該元素,再乘上該元素位置的正負號。
i\left(-\left(-2\right)-\left(-1\right)\right)-j\left(-2-\left(-\left(-1\right)\right)\right)+k\left(1-\left(-\left(-1\right)\right)\right)
對於 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),行列式為 ad-bc。
3i-j\left(-3\right)
化簡。
3j+3i
相加各項以取得最終結果。