跳到主要內容
解 y、x
Tick mark Image
圖表

來自 Web 搜索的類似問題

共享

y-3x=-5
考慮第一個方程式。 從兩邊減去 3x。
y-x=3
考慮第二個方程式。 從兩邊減去 x。
y-3x=-5,y-x=3
使用代換法來解一對方程式的方法: 首先解出其中一個方程式的一個變數。然後使用結果取代另一個方程式中的該變數。
y-3x=-5
選擇其中一個方程式並使用下列方式解出 y: 將 y 單獨置於等號的左邊。
y=3x-5
將 3x 加到方程式的兩邊。
3x-5-x=3
在另一個方程式 y-x=3 中以 3x-5 代入 y在方程式。
2x-5=3
將 3x 加到 -x。
2x=8
將 5 加到方程式的兩邊。
x=4
將兩邊同時除以 2。
y=3\times 4-5
在 y=3x-5 中以 4 代入 x。因為產生的方程式包含只有一個變數,您可以直接解出 y。
y=12-5
3 乘上 4。
y=7
將 -5 加到 12。
y=7,x=4
現已成功解出系統。
y-3x=-5
考慮第一個方程式。 從兩邊減去 3x。
y-x=3
考慮第二個方程式。 從兩邊減去 x。
y-3x=-5,y-x=3
將方程式以標準式表示,然後使用矩陣來解方程組。
\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\3\end{matrix}\right)
以矩陣形式撰寫方程式。
inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}-5\\3\end{matrix}\right)
方程式的兩邊在左方同時乘上 \left(\begin{matrix}1&-3\\1&-1\end{matrix}\right) 的反矩陣。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}-5\\3\end{matrix}\right)
矩陣和反矩陣的乘積為單位矩陣。
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-1\end{matrix}\right))\left(\begin{matrix}-5\\3\end{matrix}\right)
乘以等號左邊的矩陣。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\right)}&-\frac{-3}{-1-\left(-3\right)}\\-\frac{1}{-1-\left(-3\right)}&\frac{1}{-1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\3\end{matrix}\right)
對 2\times 2 矩陣 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),逆矩陣為 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩陣方程式可以改寫為矩陣相乘的問題。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-5\\3\end{matrix}\right)
計算。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-5\right)+\frac{3}{2}\times 3\\-\frac{1}{2}\left(-5\right)+\frac{1}{2}\times 3\end{matrix}\right)
矩陣相乘。
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\4\end{matrix}\right)
計算。
y=7,x=4
解出矩陣元素 y 和 x。
y-3x=-5
考慮第一個方程式。 從兩邊減去 3x。
y-x=3
考慮第二個方程式。 從兩邊減去 x。
y-3x=-5,y-x=3
為了使用消去法求解,兩個方程式中的其中一個變數其係數必須相同,這樣兩個方程式相減時才會消去該變數。
y-y-3x+x=-5-3
透過在等號兩邊減去同類項的方式,從 y-3x=-5 減去 y-x=3。
-3x+x=-5-3
將 y 加到 -y。 y 和 -y 項相互消去,方程式就會只剩下一個變數,很容易就可以解出。
-2x=-5-3
將 -3x 加到 x。
-2x=-8
將 -5 加到 -3。
x=4
將兩邊同時除以 -2。
y-4=3
在 y-x=3 中以 4 代入 x。因為產生的方程式包含只有一個變數,您可以直接解出 y。
y=7
將 4 加到方程式的兩邊。
y=7,x=4
現已成功解出系統。